Metamath Proof Explorer


Theorem gpgprismgr4cycllem6

Description: Lemma 6 for gpgprismgr4cycl0 : the cycle <. P , F >. is closed, i.e., the first and the last vertex are identical. (Contributed by AV, 1-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
Assertion gpgprismgr4cycllem6 ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 4 )

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
2 opex ⟨ 0 , 0 ⟩ ∈ V
3 df-s5 ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ++ ⟨“ ⟨ 0 , 0 ⟩ ”⟩ )
4 s4cli ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ∈ Word V
5 s4len ( ♯ ‘ ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ) = 4
6 s4fv0 ( ⟨ 0 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ‘ 0 ) = ⟨ 0 , 0 ⟩ )
7 0nn0 0 ∈ ℕ0
8 4pos 0 < 4
9 3 4 5 6 7 8 cats1fv ( ⟨ 0 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 0 ) = ⟨ 0 , 0 ⟩ )
10 2 9 ax-mp ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 0 ) = ⟨ 0 , 0 ⟩
11 3 4 5 cats1fvn ( ⟨ 0 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 4 ) = ⟨ 0 , 0 ⟩ )
12 2 11 ax-mp ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 4 ) = ⟨ 0 , 0 ⟩
13 10 12 eqtr4i ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 0 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 4 )
14 1 fveq1i ( 𝑃 ‘ 0 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 0 )
15 1 fveq1i ( 𝑃 ‘ 4 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 4 )
16 13 14 15 3eqtr4i ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 4 )