Metamath Proof Explorer


Theorem gpgprismgr4cycl0

Description: The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex <. 0 , 0 >. . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
Assertion gpgprismgr4cycl0 ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 4 ) )

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
2 gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
3 gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
4 1 2 3 gpgprismgr4cycllem11 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 )
5 2 gpgprismgr4cycllem1 ( ♯ ‘ 𝐹 ) = 4
6 4 5 jctir ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 4 ) )