| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgprismgr4cycl.p |
⊢ 𝑃 = 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 |
| 2 |
|
gpgprismgr4cycl.f |
⊢ 𝐹 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 |
| 3 |
|
gpgprismgr4cycl.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 1 ) |
| 4 |
1
|
gpgprismgr4cycllem5 |
⊢ 𝑃 ∈ Word V |
| 5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑃 ∈ Word V ) |
| 6 |
1
|
gpgprismgr4cycllem4 |
⊢ ( ♯ ‘ 𝑃 ) = 5 |
| 7 |
6
|
oveq1i |
⊢ ( ( ♯ ‘ 𝑃 ) − 1 ) = ( 5 − 1 ) |
| 8 |
|
5m1e4 |
⊢ ( 5 − 1 ) = 4 |
| 9 |
7 8
|
eqtri |
⊢ ( ( ♯ ‘ 𝑃 ) − 1 ) = 4 |
| 10 |
9
|
eqcomi |
⊢ 4 = ( ( ♯ ‘ 𝑃 ) − 1 ) |
| 11 |
1
|
gpgprismgr4cycllem7 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∧ 𝑦 ∈ ( 1 ..^ 4 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑃 ‘ 𝑥 ) ≠ ( 𝑃 ‘ 𝑦 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∧ 𝑦 ∈ ( 1 ..^ 4 ) ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑃 ‘ 𝑥 ) ≠ ( 𝑃 ‘ 𝑦 ) ) ) |
| 13 |
12
|
ralrimivva |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑦 ∈ ( 1 ..^ 4 ) ( 𝑥 ≠ 𝑦 → ( 𝑃 ‘ 𝑥 ) ≠ ( 𝑃 ‘ 𝑦 ) ) ) |
| 14 |
2
|
gpgprismgr4cycllem1 |
⊢ ( ♯ ‘ 𝐹 ) = 4 |
| 15 |
1 2 3
|
gpgprismgr4cycllem8 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 16 |
1 2 3
|
gpgprismgr4cycllem9 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 17 |
1 2 3
|
gpgprismgr4cycllem10 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
| 18 |
17
|
ralrimiva |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
| 19 |
|
gpgprismgrusgra |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 gPetersenGr 1 ) ∈ USGraph ) |
| 20 |
3
|
eleq1i |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝑁 gPetersenGr 1 ) ∈ USGraph ) |
| 21 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
| 22 |
20 21
|
sylbir |
⊢ ( ( 𝑁 gPetersenGr 1 ) ∈ USGraph → 𝐺 ∈ UPGraph ) |
| 23 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 24 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 25 |
23 24
|
upgriswlk |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) ) |
| 26 |
19 22 25
|
3syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) ) |
| 27 |
15 16 18 26
|
mpbir3and |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 28 |
2
|
gpgprismgr4cycllem2 |
⊢ Fun ◡ 𝐹 |
| 29 |
|
istrl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) |
| 30 |
27 28 29
|
sylanblrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 31 |
5 10 13 14 30
|
pthd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 32 |
1
|
gpgprismgr4cycllem6 |
⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 4 ) |
| 33 |
14
|
eqcomi |
⊢ 4 = ( ♯ ‘ 𝐹 ) |
| 34 |
33
|
fveq2i |
⊢ ( 𝑃 ‘ 4 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) |
| 35 |
32 34
|
eqtri |
⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) |
| 36 |
|
iscycl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 37 |
31 35 36
|
sylanblrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |