Metamath Proof Explorer


Theorem gpgprismgr4cycllem11

Description: Lemma 11 for gpgprismgr4cycl0 . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
Assertion gpgprismgr4cycllem11 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
2 gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
3 gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
4 1 gpgprismgr4cycllem5 𝑃 ∈ Word V
5 4 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑃 ∈ Word V )
6 1 gpgprismgr4cycllem4 ( ♯ ‘ 𝑃 ) = 5
7 6 oveq1i ( ( ♯ ‘ 𝑃 ) − 1 ) = ( 5 − 1 )
8 5m1e4 ( 5 − 1 ) = 4
9 7 8 eqtri ( ( ♯ ‘ 𝑃 ) − 1 ) = 4
10 9 eqcomi 4 = ( ( ♯ ‘ 𝑃 ) − 1 )
11 1 gpgprismgr4cycllem7 ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∧ 𝑦 ∈ ( 1 ..^ 4 ) ) → ( 𝑥𝑦 → ( 𝑃𝑥 ) ≠ ( 𝑃𝑦 ) ) )
12 11 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∧ 𝑦 ∈ ( 1 ..^ 4 ) ) ) → ( 𝑥𝑦 → ( 𝑃𝑥 ) ≠ ( 𝑃𝑦 ) ) )
13 12 ralrimivva ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑦 ∈ ( 1 ..^ 4 ) ( 𝑥𝑦 → ( 𝑃𝑥 ) ≠ ( 𝑃𝑦 ) ) )
14 2 gpgprismgr4cycllem1 ( ♯ ‘ 𝐹 ) = 4
15 1 2 3 gpgprismgr4cycllem8 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) )
16 1 2 3 gpgprismgr4cycllem9 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
17 1 2 3 gpgprismgr4cycllem10 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } )
18 17 ralrimiva ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } )
19 gpgprismgrusgra ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑁 gPetersenGr 1 ) ∈ USGraph )
20 3 eleq1i ( 𝐺 ∈ USGraph ↔ ( 𝑁 gPetersenGr 1 ) ∈ USGraph )
21 usgrupgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph )
22 20 21 sylbir ( ( 𝑁 gPetersenGr 1 ) ∈ USGraph → 𝐺 ∈ UPGraph )
23 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
24 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
25 23 24 upgriswlk ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) )
26 19 22 25 3syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) )
27 15 16 18 26 mpbir3and ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
28 2 gpgprismgr4cycllem2 Fun 𝐹
29 istrl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun 𝐹 ) )
30 27 28 29 sylanblrc ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 )
31 5 10 13 14 30 pthd ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 )
32 1 gpgprismgr4cycllem6 ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 4 )
33 14 eqcomi 4 = ( ♯ ‘ 𝐹 )
34 33 fveq2i ( 𝑃 ‘ 4 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )
35 32 34 eqtri ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )
36 iscycl ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )
37 31 35 36 sylanblrc ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 )