Metamath Proof Explorer


Theorem gpgprismgr4cycllem10

Description: Lemma 10 for gpgprismgr4cycl0 . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
Assertion gpgprismgr4cycllem10 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑋 ) ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
2 gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
3 gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
4 3 fveq2i ( iEdg ‘ 𝐺 ) = ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) )
5 4 a1i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
6 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
7 1elfzo1ceilhalf1 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
8 6 7 jca ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑁 ∈ ℕ ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) )
9 8 adantr ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ∈ ℕ ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) )
10 eqid ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
11 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
12 10 11 gpgiedg ( ( 𝑁 ∈ ℕ ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) = ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } ) )
13 9 12 syl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) = ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } ) )
14 5 13 eqtrd ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( iEdg ‘ 𝐺 ) = ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } ) )
15 14 fveq1d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑋 ) ) = ( ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } ) ‘ ( 𝐹𝑋 ) ) )
16 2 gpgprismgr4cycllem3 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ 4 ) ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
17 2 gpgprismgr4cycllem1 ( ♯ ‘ 𝐹 ) = 4
18 17 oveq2i ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 4 )
19 18 eleq2i ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 𝑋 ∈ ( 0 ..^ 4 ) )
20 19 anbi2i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ 4 ) ) )
21 eqeq1 ( 𝑒 = ( 𝐹𝑋 ) → ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
22 eqeq1 ( 𝑒 = ( 𝐹𝑋 ) → ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ) )
23 eqeq1 ( 𝑒 = ( 𝐹𝑋 ) → ( 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
24 21 22 23 3orbi123d ( 𝑒 = ( 𝐹𝑋 ) → ( ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
25 24 rexbidv ( 𝑒 = ( 𝐹𝑋 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
26 25 elrab ( ( 𝐹𝑋 ) ∈ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } ↔ ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
27 16 20 26 3imtr4i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹𝑋 ) ∈ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } )
28 fvresi ( ( 𝐹𝑋 ) ∈ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } → ( ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } ) ‘ ( 𝐹𝑋 ) ) = ( 𝐹𝑋 ) )
29 27 28 syl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) } ) ‘ ( 𝐹𝑋 ) ) = ( 𝐹𝑋 ) )
30 15 29 eqtrd ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑋 ) ) = ( 𝐹𝑋 ) )
31 fzo0to42pr ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } )
32 31 eleq2i ( 𝑋 ∈ ( 0 ..^ 4 ) ↔ 𝑋 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) )
33 elun ( 𝑋 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ↔ ( 𝑋 ∈ { 0 , 1 } ∨ 𝑋 ∈ { 2 , 3 } ) )
34 19 32 33 3bitri ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ { 0 , 1 } ∨ 𝑋 ∈ { 2 , 3 } ) )
35 elpri ( 𝑋 ∈ { 0 , 1 } → ( 𝑋 = 0 ∨ 𝑋 = 1 ) )
36 prex { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ V
37 s4fv0 ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 0 ) = { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } )
38 36 37 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 0 ) = { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ }
39 2 fveq1i ( 𝐹 ‘ 0 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 0 )
40 1 fveq1i ( 𝑃 ‘ 0 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 0 )
41 opex ⟨ 0 , 0 ⟩ ∈ V
42 df-s5 ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ++ ⟨“ ⟨ 0 , 0 ⟩ ”⟩ )
43 s4cli ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ∈ Word V
44 s4len ( ♯ ‘ ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ) = 4
45 s4fv0 ( ⟨ 0 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ‘ 0 ) = ⟨ 0 , 0 ⟩ )
46 0nn0 0 ∈ ℕ0
47 4pos 0 < 4
48 42 43 44 45 46 47 cats1fv ( ⟨ 0 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 0 ) = ⟨ 0 , 0 ⟩ )
49 41 48 ax-mp ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 0 ) = ⟨ 0 , 0 ⟩
50 40 49 eqtri ( 𝑃 ‘ 0 ) = ⟨ 0 , 0 ⟩
51 1 fveq1i ( 𝑃 ‘ 1 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 1 )
52 opex ⟨ 0 , 1 ⟩ ∈ V
53 s4fv1 ( ⟨ 0 , 1 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ‘ 1 ) = ⟨ 0 , 1 ⟩ )
54 1nn0 1 ∈ ℕ0
55 1lt4 1 < 4
56 42 43 44 53 54 55 cats1fv ( ⟨ 0 , 1 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 1 ) = ⟨ 0 , 1 ⟩ )
57 52 56 ax-mp ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 1 ) = ⟨ 0 , 1 ⟩
58 51 57 eqtri ( 𝑃 ‘ 1 ) = ⟨ 0 , 1 ⟩
59 50 58 preq12i { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ }
60 38 39 59 3eqtr4i ( 𝐹 ‘ 0 ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) }
61 fveq2 ( 𝑋 = 0 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 0 ) )
62 fveq2 ( 𝑋 = 0 → ( 𝑃𝑋 ) = ( 𝑃 ‘ 0 ) )
63 fv0p1e1 ( 𝑋 = 0 → ( 𝑃 ‘ ( 𝑋 + 1 ) ) = ( 𝑃 ‘ 1 ) )
64 62 63 preq12d ( 𝑋 = 0 → { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } )
65 60 61 64 3eqtr4a ( 𝑋 = 0 → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
66 prex { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ V
67 s4fv1 ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 1 ) = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } )
68 66 67 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 1 ) = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ }
69 2 fveq1i ( 𝐹 ‘ 1 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 1 )
70 1 fveq1i ( 𝑃 ‘ 2 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 2 )
71 opex ⟨ 1 , 1 ⟩ ∈ V
72 s4fv2 ( ⟨ 1 , 1 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ‘ 2 ) = ⟨ 1 , 1 ⟩ )
73 2nn0 2 ∈ ℕ0
74 2lt4 2 < 4
75 42 43 44 72 73 74 cats1fv ( ⟨ 1 , 1 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 2 ) = ⟨ 1 , 1 ⟩ )
76 71 75 ax-mp ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 2 ) = ⟨ 1 , 1 ⟩
77 70 76 eqtri ( 𝑃 ‘ 2 ) = ⟨ 1 , 1 ⟩
78 58 77 preq12i { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ }
79 68 69 78 3eqtr4i ( 𝐹 ‘ 1 ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) }
80 fveq2 ( 𝑋 = 1 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 1 ) )
81 fveq2 ( 𝑋 = 1 → ( 𝑃𝑋 ) = ( 𝑃 ‘ 1 ) )
82 oveq1 ( 𝑋 = 1 → ( 𝑋 + 1 ) = ( 1 + 1 ) )
83 1p1e2 ( 1 + 1 ) = 2
84 82 83 eqtrdi ( 𝑋 = 1 → ( 𝑋 + 1 ) = 2 )
85 84 fveq2d ( 𝑋 = 1 → ( 𝑃 ‘ ( 𝑋 + 1 ) ) = ( 𝑃 ‘ 2 ) )
86 81 85 preq12d ( 𝑋 = 1 → { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } )
87 79 80 86 3eqtr4a ( 𝑋 = 1 → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
88 65 87 jaoi ( ( 𝑋 = 0 ∨ 𝑋 = 1 ) → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
89 35 88 syl ( 𝑋 ∈ { 0 , 1 } → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
90 elpri ( 𝑋 ∈ { 2 , 3 } → ( 𝑋 = 2 ∨ 𝑋 = 3 ) )
91 prex { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ V
92 s4fv2 ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 2 ) = { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } )
93 91 92 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 2 ) = { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ }
94 2 fveq1i ( 𝐹 ‘ 2 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 2 )
95 1 fveq1i ( 𝑃 ‘ 3 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 3 )
96 opex ⟨ 1 , 0 ⟩ ∈ V
97 s4fv3 ( ⟨ 1 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ”⟩ ‘ 3 ) = ⟨ 1 , 0 ⟩ )
98 3nn0 3 ∈ ℕ0
99 3lt4 3 < 4
100 42 43 44 97 98 99 cats1fv ( ⟨ 1 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 3 ) = ⟨ 1 , 0 ⟩ )
101 96 100 ax-mp ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 3 ) = ⟨ 1 , 0 ⟩
102 95 101 eqtri ( 𝑃 ‘ 3 ) = ⟨ 1 , 0 ⟩
103 77 102 preq12i { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ }
104 93 94 103 3eqtr4i ( 𝐹 ‘ 2 ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) }
105 fveq2 ( 𝑋 = 2 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 2 ) )
106 fveq2 ( 𝑋 = 2 → ( 𝑃𝑋 ) = ( 𝑃 ‘ 2 ) )
107 oveq1 ( 𝑋 = 2 → ( 𝑋 + 1 ) = ( 2 + 1 ) )
108 2p1e3 ( 2 + 1 ) = 3
109 107 108 eqtrdi ( 𝑋 = 2 → ( 𝑋 + 1 ) = 3 )
110 109 fveq2d ( 𝑋 = 2 → ( 𝑃 ‘ ( 𝑋 + 1 ) ) = ( 𝑃 ‘ 3 ) )
111 106 110 preq12d ( 𝑋 = 2 → { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } )
112 104 105 111 3eqtr4a ( 𝑋 = 2 → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
113 prex { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ V
114 s4fv3 ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 3 ) = { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } )
115 113 114 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 3 ) = { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ }
116 2 fveq1i ( 𝐹 ‘ 3 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 3 )
117 1 fveq1i ( 𝑃 ‘ 4 ) = ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 4 )
118 42 43 44 cats1fvn ( ⟨ 0 , 0 ⟩ ∈ V → ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 4 ) = ⟨ 0 , 0 ⟩ )
119 41 118 ax-mp ( ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ‘ 4 ) = ⟨ 0 , 0 ⟩
120 117 119 eqtri ( 𝑃 ‘ 4 ) = ⟨ 0 , 0 ⟩
121 102 120 preq12i { ( 𝑃 ‘ 3 ) , ( 𝑃 ‘ 4 ) } = { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ }
122 115 116 121 3eqtr4i ( 𝐹 ‘ 3 ) = { ( 𝑃 ‘ 3 ) , ( 𝑃 ‘ 4 ) }
123 fveq2 ( 𝑋 = 3 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 3 ) )
124 fveq2 ( 𝑋 = 3 → ( 𝑃𝑋 ) = ( 𝑃 ‘ 3 ) )
125 oveq1 ( 𝑋 = 3 → ( 𝑋 + 1 ) = ( 3 + 1 ) )
126 3p1e4 ( 3 + 1 ) = 4
127 125 126 eqtrdi ( 𝑋 = 3 → ( 𝑋 + 1 ) = 4 )
128 127 fveq2d ( 𝑋 = 3 → ( 𝑃 ‘ ( 𝑋 + 1 ) ) = ( 𝑃 ‘ 4 ) )
129 124 128 preq12d ( 𝑋 = 3 → { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } = { ( 𝑃 ‘ 3 ) , ( 𝑃 ‘ 4 ) } )
130 122 123 129 3eqtr4a ( 𝑋 = 3 → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
131 112 130 jaoi ( ( 𝑋 = 2 ∨ 𝑋 = 3 ) → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
132 90 131 syl ( 𝑋 ∈ { 2 , 3 } → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
133 89 132 jaoi ( ( 𝑋 ∈ { 0 , 1 } ∨ 𝑋 ∈ { 2 , 3 } ) → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
134 34 133 sylbi ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
135 134 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹𝑋 ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )
136 30 135 eqtrd ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑋 ) ) = { ( 𝑃𝑋 ) , ( 𝑃 ‘ ( 𝑋 + 1 ) ) } )