Metamath Proof Explorer


Theorem 1elfzo1ceilhalf1

Description: 1 is in the half-open integer range from 1 to the ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion 1elfzo1ceilhalf1 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 1 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ℕ )
3 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
4 ceilhalfnn ( 𝑁 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ )
5 3 4 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ )
6 ceilhalfgt1 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 < ( ⌈ ‘ ( 𝑁 / 2 ) ) )
7 elfzo1 ( 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( 1 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 1 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
8 2 5 6 7 syl3anbrc ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )