Metamath Proof Explorer


Theorem 1elfzo1ceilhalf1

Description: 1 is in the half-open integer range from 1 to the ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion 1elfzo1ceilhalf1 N 3 1 1 ..^ N 2

Proof

Step Hyp Ref Expression
1 1nn 1
2 1 a1i N 3 1
3 eluzge3nn N 3 N
4 ceilhalfnn N N 2
5 3 4 syl N 3 N 2
6 ceilhalfgt1 N 3 1 < N 2
7 elfzo1 1 1 ..^ N 2 1 N 2 1 < N 2
8 2 5 6 7 syl3anbrc N 3 1 1 ..^ N 2