Metamath Proof Explorer


Theorem ceilhalfnn

Description: The ceiling of half of a positive integer is a positive integer. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion ceilhalfnn N N 2

Proof

Step Hyp Ref Expression
1 nnre N N
2 1 rehalfcld N N 2
3 2 ceilcld N N 2
4 elnn1uz2 N N = 1 N 2
5 1le1 1 1
6 fvoveq1 N = 1 N 2 = 1 2
7 ceilhalf1 1 2 = 1
8 6 7 eqtrdi N = 1 N 2 = 1
9 5 8 breqtrrid N = 1 1 N 2
10 1red N 2 1
11 eluzelre N 2 N
12 11 rehalfcld N 2 N 2
13 12 ceilcld N 2 N 2
14 13 zred N 2 N 2
15 eluzle N 2 2 N
16 2re 2
17 elicopnf 2 N 2 +∞ N 2 N
18 16 17 ax-mp N 2 +∞ N 2 N
19 11 15 18 sylanbrc N 2 N 2 +∞
20 rehalfge1 N 2 +∞ 1 N 2
21 19 20 syl N 2 1 N 2
22 12 ceilged N 2 N 2 N 2
23 10 12 14 21 22 letrd N 2 1 N 2
24 9 23 jaoi N = 1 N 2 1 N 2
25 4 24 sylbi N 1 N 2
26 elnnz1 N 2 N 2 1 N 2
27 3 25 26 sylanbrc N N 2