Metamath Proof Explorer


Theorem ceilhalf1

Description: The ceiling of one half is one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion ceilhalf1 1 2 = 1

Proof

Step Hyp Ref Expression
1 halfre 1 2
2 1re 1
3 halflt1 1 2 < 1
4 1 2 3 ltleii 1 2 1
5 1m1e0 1 1 = 0
6 halfgt0 0 < 1 2
7 5 6 eqbrtri 1 1 < 1 2
8 2 2 1 ltsubaddi 1 1 < 1 2 1 < 1 2 + 1
9 7 8 mpbi 1 < 1 2 + 1
10 1z 1
11 ceilbi 1 2 1 1 2 = 1 1 2 1 1 < 1 2 + 1
12 1 10 11 mp2an 1 2 = 1 1 2 1 1 < 1 2 + 1
13 4 9 12 mpbir2an 1 2 = 1