| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 4 |
1 2 3
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
| 5 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 6 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 7 |
5 6
|
eqbrtri |
⊢ ( 1 − 1 ) < ( 1 / 2 ) |
| 8 |
2 2 1
|
ltsubaddi |
⊢ ( ( 1 − 1 ) < ( 1 / 2 ) ↔ 1 < ( ( 1 / 2 ) + 1 ) ) |
| 9 |
7 8
|
mpbi |
⊢ 1 < ( ( 1 / 2 ) + 1 ) |
| 10 |
|
1z |
⊢ 1 ∈ ℤ |
| 11 |
|
ceilbi |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( ( ⌈ ‘ ( 1 / 2 ) ) = 1 ↔ ( ( 1 / 2 ) ≤ 1 ∧ 1 < ( ( 1 / 2 ) + 1 ) ) ) ) |
| 12 |
1 10 11
|
mp2an |
⊢ ( ( ⌈ ‘ ( 1 / 2 ) ) = 1 ↔ ( ( 1 / 2 ) ≤ 1 ∧ 1 < ( ( 1 / 2 ) + 1 ) ) ) |
| 13 |
4 9 12
|
mpbir2an |
⊢ ( ⌈ ‘ ( 1 / 2 ) ) = 1 |