| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ceilval |
⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) ) |
| 3 |
2
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌈ ‘ 𝐴 ) = 𝐵 ↔ - ( ⌊ ‘ - 𝐴 ) = 𝐵 ) ) |
| 4 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 5 |
4
|
flcld |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℤ ) |
| 6 |
5
|
zcnd |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℂ ) |
| 7 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 8 |
|
negcon1 |
⊢ ( ( ( ⌊ ‘ - 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - ( ⌊ ‘ - 𝐴 ) = 𝐵 ↔ - 𝐵 = ( ⌊ ‘ - 𝐴 ) ) ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - ( ⌊ ‘ - 𝐴 ) = 𝐵 ↔ - 𝐵 = ( ⌊ ‘ - 𝐴 ) ) ) |
| 10 |
|
eqcom |
⊢ ( - 𝐵 = ( ⌊ ‘ - 𝐴 ) ↔ ( ⌊ ‘ - 𝐴 ) = - 𝐵 ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - 𝐵 = ( ⌊ ‘ - 𝐴 ) ↔ ( ⌊ ‘ - 𝐴 ) = - 𝐵 ) ) |
| 12 |
|
znegcl |
⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) |
| 13 |
|
flbi |
⊢ ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ - 𝐴 ) = - 𝐵 ↔ ( - 𝐵 ≤ - 𝐴 ∧ - 𝐴 < ( - 𝐵 + 1 ) ) ) ) |
| 14 |
4 12 13
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ - 𝐴 ) = - 𝐵 ↔ ( - 𝐵 ≤ - 𝐴 ∧ - 𝐴 < ( - 𝐵 + 1 ) ) ) ) |
| 15 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 16 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 18 |
15 17
|
lenegd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐴 ) ) |
| 19 |
18
|
bicomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - 𝐵 ≤ - 𝐴 ↔ 𝐴 ≤ 𝐵 ) ) |
| 20 |
|
peano2rem |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) |
| 21 |
16 20
|
syl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 − 1 ) ∈ ℝ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 − 1 ) ∈ ℝ ) |
| 23 |
22 15
|
ltnegd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 − 1 ) < 𝐴 ↔ - 𝐴 < - ( 𝐵 − 1 ) ) ) |
| 24 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 1 ∈ ℝ ) |
| 25 |
17 24 15
|
ltsubaddd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 − 1 ) < 𝐴 ↔ 𝐵 < ( 𝐴 + 1 ) ) ) |
| 26 |
|
1cnd |
⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℂ ) |
| 27 |
|
negsubdi |
⊢ ( ( 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝐵 − 1 ) = ( - 𝐵 + 1 ) ) |
| 28 |
7 26 27
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → - ( 𝐵 − 1 ) = ( - 𝐵 + 1 ) ) |
| 29 |
28
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - 𝐴 < - ( 𝐵 − 1 ) ↔ - 𝐴 < ( - 𝐵 + 1 ) ) ) |
| 30 |
23 25 29
|
3bitr3rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - 𝐴 < ( - 𝐵 + 1 ) ↔ 𝐵 < ( 𝐴 + 1 ) ) ) |
| 31 |
19 30
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( - 𝐵 ≤ - 𝐴 ∧ - 𝐴 < ( - 𝐵 + 1 ) ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐴 + 1 ) ) ) ) |
| 32 |
11 14 31
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - 𝐵 = ( ⌊ ‘ - 𝐴 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐴 + 1 ) ) ) ) |
| 33 |
3 9 32
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌈ ‘ 𝐴 ) = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐴 + 1 ) ) ) ) |