| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ceilval |
|- ( A e. RR -> ( |^ ` A ) = -u ( |_ ` -u A ) ) |
| 2 |
1
|
adantr |
|- ( ( A e. RR /\ B e. ZZ ) -> ( |^ ` A ) = -u ( |_ ` -u A ) ) |
| 3 |
2
|
eqeq1d |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( |^ ` A ) = B <-> -u ( |_ ` -u A ) = B ) ) |
| 4 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 5 |
4
|
flcld |
|- ( A e. RR -> ( |_ ` -u A ) e. ZZ ) |
| 6 |
5
|
zcnd |
|- ( A e. RR -> ( |_ ` -u A ) e. CC ) |
| 7 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 8 |
|
negcon1 |
|- ( ( ( |_ ` -u A ) e. CC /\ B e. CC ) -> ( -u ( |_ ` -u A ) = B <-> -u B = ( |_ ` -u A ) ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) = B <-> -u B = ( |_ ` -u A ) ) ) |
| 10 |
|
eqcom |
|- ( -u B = ( |_ ` -u A ) <-> ( |_ ` -u A ) = -u B ) |
| 11 |
10
|
a1i |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u B = ( |_ ` -u A ) <-> ( |_ ` -u A ) = -u B ) ) |
| 12 |
|
znegcl |
|- ( B e. ZZ -> -u B e. ZZ ) |
| 13 |
|
flbi |
|- ( ( -u A e. RR /\ -u B e. ZZ ) -> ( ( |_ ` -u A ) = -u B <-> ( -u B <_ -u A /\ -u A < ( -u B + 1 ) ) ) ) |
| 14 |
4 12 13
|
syl2an |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` -u A ) = -u B <-> ( -u B <_ -u A /\ -u A < ( -u B + 1 ) ) ) ) |
| 15 |
|
simpl |
|- ( ( A e. RR /\ B e. ZZ ) -> A e. RR ) |
| 16 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
| 17 |
16
|
adantl |
|- ( ( A e. RR /\ B e. ZZ ) -> B e. RR ) |
| 18 |
15 17
|
lenegd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( A <_ B <-> -u B <_ -u A ) ) |
| 19 |
18
|
bicomd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u B <_ -u A <-> A <_ B ) ) |
| 20 |
|
peano2rem |
|- ( B e. RR -> ( B - 1 ) e. RR ) |
| 21 |
16 20
|
syl |
|- ( B e. ZZ -> ( B - 1 ) e. RR ) |
| 22 |
21
|
adantl |
|- ( ( A e. RR /\ B e. ZZ ) -> ( B - 1 ) e. RR ) |
| 23 |
22 15
|
ltnegd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( B - 1 ) < A <-> -u A < -u ( B - 1 ) ) ) |
| 24 |
|
1red |
|- ( ( A e. RR /\ B e. ZZ ) -> 1 e. RR ) |
| 25 |
17 24 15
|
ltsubaddd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( B - 1 ) < A <-> B < ( A + 1 ) ) ) |
| 26 |
|
1cnd |
|- ( A e. RR -> 1 e. CC ) |
| 27 |
|
negsubdi |
|- ( ( B e. CC /\ 1 e. CC ) -> -u ( B - 1 ) = ( -u B + 1 ) ) |
| 28 |
7 26 27
|
syl2anr |
|- ( ( A e. RR /\ B e. ZZ ) -> -u ( B - 1 ) = ( -u B + 1 ) ) |
| 29 |
28
|
breq2d |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u A < -u ( B - 1 ) <-> -u A < ( -u B + 1 ) ) ) |
| 30 |
23 25 29
|
3bitr3rd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u A < ( -u B + 1 ) <-> B < ( A + 1 ) ) ) |
| 31 |
19 30
|
anbi12d |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( -u B <_ -u A /\ -u A < ( -u B + 1 ) ) <-> ( A <_ B /\ B < ( A + 1 ) ) ) ) |
| 32 |
11 14 31
|
3bitrd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u B = ( |_ ` -u A ) <-> ( A <_ B /\ B < ( A + 1 ) ) ) ) |
| 33 |
3 9 32
|
3bitrd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( |^ ` A ) = B <-> ( A <_ B /\ B < ( A + 1 ) ) ) ) |