Metamath Proof Explorer


Theorem ceilbi

Description: A condition equivalent to ceiling. Analogous to flbi . (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion ceilbi A B A = B A B B < A + 1

Proof

Step Hyp Ref Expression
1 ceilval A A = A
2 1 adantr A B A = A
3 2 eqeq1d A B A = B A = B
4 renegcl A A
5 4 flcld A A
6 5 zcnd A A
7 zcn B B
8 negcon1 A B A = B B = A
9 6 7 8 syl2an A B A = B B = A
10 eqcom B = A A = B
11 10 a1i A B B = A A = B
12 znegcl B B
13 flbi A B A = B B A A < - B + 1
14 4 12 13 syl2an A B A = B B A A < - B + 1
15 simpl A B A
16 zre B B
17 16 adantl A B B
18 15 17 lenegd A B A B B A
19 18 bicomd A B B A A B
20 peano2rem B B 1
21 16 20 syl B B 1
22 21 adantl A B B 1
23 22 15 ltnegd A B B 1 < A A < B 1
24 1red A B 1
25 17 24 15 ltsubaddd A B B 1 < A B < A + 1
26 1cnd A 1
27 negsubdi B 1 B 1 = - B + 1
28 7 26 27 syl2anr A B B 1 = - B + 1
29 28 breq2d A B A < B 1 A < - B + 1
30 23 25 29 3bitr3rd A B A < - B + 1 B < A + 1
31 19 30 anbi12d A B B A A < - B + 1 A B B < A + 1
32 11 14 31 3bitrd A B B = A A B B < A + 1
33 3 9 32 3bitrd A B A = B A B B < A + 1