Metamath Proof Explorer


Theorem ceilhalf1

Description: The ceiling of one half is one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion ceilhalf1
|- ( |^ ` ( 1 / 2 ) ) = 1

Proof

Step Hyp Ref Expression
1 halfre
 |-  ( 1 / 2 ) e. RR
2 1re
 |-  1 e. RR
3 halflt1
 |-  ( 1 / 2 ) < 1
4 1 2 3 ltleii
 |-  ( 1 / 2 ) <_ 1
5 1m1e0
 |-  ( 1 - 1 ) = 0
6 halfgt0
 |-  0 < ( 1 / 2 )
7 5 6 eqbrtri
 |-  ( 1 - 1 ) < ( 1 / 2 )
8 2 2 1 ltsubaddi
 |-  ( ( 1 - 1 ) < ( 1 / 2 ) <-> 1 < ( ( 1 / 2 ) + 1 ) )
9 7 8 mpbi
 |-  1 < ( ( 1 / 2 ) + 1 )
10 1z
 |-  1 e. ZZ
11 ceilbi
 |-  ( ( ( 1 / 2 ) e. RR /\ 1 e. ZZ ) -> ( ( |^ ` ( 1 / 2 ) ) = 1 <-> ( ( 1 / 2 ) <_ 1 /\ 1 < ( ( 1 / 2 ) + 1 ) ) ) )
12 1 10 11 mp2an
 |-  ( ( |^ ` ( 1 / 2 ) ) = 1 <-> ( ( 1 / 2 ) <_ 1 /\ 1 < ( ( 1 / 2 ) + 1 ) ) )
13 4 9 12 mpbir2an
 |-  ( |^ ` ( 1 / 2 ) ) = 1