Metamath Proof Explorer


Theorem rehalfge1

Description: Half of a real number greater than or equal to two is greater than or equal to one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion rehalfge1
|- ( X e. ( 2 [,) +oo ) -> 1 <_ ( X / 2 ) )

Proof

Step Hyp Ref Expression
1 2cn
 |-  2 e. CC
2 1 mullidi
 |-  ( 1 x. 2 ) = 2
3 2re
 |-  2 e. RR
4 3 rexri
 |-  2 e. RR*
5 4 a1i
 |-  ( X e. ( 2 [,) +oo ) -> 2 e. RR* )
6 pnfxr
 |-  +oo e. RR*
7 6 a1i
 |-  ( X e. ( 2 [,) +oo ) -> +oo e. RR* )
8 id
 |-  ( X e. ( 2 [,) +oo ) -> X e. ( 2 [,) +oo ) )
9 5 7 8 icogelbd
 |-  ( X e. ( 2 [,) +oo ) -> 2 <_ X )
10 2 9 eqbrtrid
 |-  ( X e. ( 2 [,) +oo ) -> ( 1 x. 2 ) <_ X )
11 1red
 |-  ( X e. ( 2 [,) +oo ) -> 1 e. RR )
12 0le2
 |-  0 <_ 2
13 0xr
 |-  0 e. RR*
14 13 a1i
 |-  ( 0 <_ 2 -> 0 e. RR* )
15 6 a1i
 |-  ( 0 <_ 2 -> +oo e. RR* )
16 id
 |-  ( 0 <_ 2 -> 0 <_ 2 )
17 14 15 16 icossico2d
 |-  ( 0 <_ 2 -> ( 2 [,) +oo ) C_ ( 0 [,) +oo ) )
18 12 17 ax-mp
 |-  ( 2 [,) +oo ) C_ ( 0 [,) +oo )
19 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
20 18 19 sstri
 |-  ( 2 [,) +oo ) C_ RR
21 20 sseli
 |-  ( X e. ( 2 [,) +oo ) -> X e. RR )
22 2rp
 |-  2 e. RR+
23 22 a1i
 |-  ( X e. ( 2 [,) +oo ) -> 2 e. RR+ )
24 11 21 23 lemuldivd
 |-  ( X e. ( 2 [,) +oo ) -> ( ( 1 x. 2 ) <_ X <-> 1 <_ ( X / 2 ) ) )
25 10 24 mpbid
 |-  ( X e. ( 2 [,) +oo ) -> 1 <_ ( X / 2 ) )