| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cn |
|- 2 e. CC |
| 2 |
1
|
mullidi |
|- ( 1 x. 2 ) = 2 |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
3
|
rexri |
|- 2 e. RR* |
| 5 |
4
|
a1i |
|- ( X e. ( 2 [,) +oo ) -> 2 e. RR* ) |
| 6 |
|
pnfxr |
|- +oo e. RR* |
| 7 |
6
|
a1i |
|- ( X e. ( 2 [,) +oo ) -> +oo e. RR* ) |
| 8 |
|
id |
|- ( X e. ( 2 [,) +oo ) -> X e. ( 2 [,) +oo ) ) |
| 9 |
5 7 8
|
icogelbd |
|- ( X e. ( 2 [,) +oo ) -> 2 <_ X ) |
| 10 |
2 9
|
eqbrtrid |
|- ( X e. ( 2 [,) +oo ) -> ( 1 x. 2 ) <_ X ) |
| 11 |
|
1red |
|- ( X e. ( 2 [,) +oo ) -> 1 e. RR ) |
| 12 |
|
0le2 |
|- 0 <_ 2 |
| 13 |
|
0xr |
|- 0 e. RR* |
| 14 |
13
|
a1i |
|- ( 0 <_ 2 -> 0 e. RR* ) |
| 15 |
6
|
a1i |
|- ( 0 <_ 2 -> +oo e. RR* ) |
| 16 |
|
id |
|- ( 0 <_ 2 -> 0 <_ 2 ) |
| 17 |
14 15 16
|
icossico2d |
|- ( 0 <_ 2 -> ( 2 [,) +oo ) C_ ( 0 [,) +oo ) ) |
| 18 |
12 17
|
ax-mp |
|- ( 2 [,) +oo ) C_ ( 0 [,) +oo ) |
| 19 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 20 |
18 19
|
sstri |
|- ( 2 [,) +oo ) C_ RR |
| 21 |
20
|
sseli |
|- ( X e. ( 2 [,) +oo ) -> X e. RR ) |
| 22 |
|
2rp |
|- 2 e. RR+ |
| 23 |
22
|
a1i |
|- ( X e. ( 2 [,) +oo ) -> 2 e. RR+ ) |
| 24 |
11 21 23
|
lemuldivd |
|- ( X e. ( 2 [,) +oo ) -> ( ( 1 x. 2 ) <_ X <-> 1 <_ ( X / 2 ) ) ) |
| 25 |
10 24
|
mpbid |
|- ( X e. ( 2 [,) +oo ) -> 1 <_ ( X / 2 ) ) |