Metamath Proof Explorer


Theorem rehalfge1

Description: Half of a real number greater than or equal to two is greater than or equal to one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion rehalfge1 ( 𝑋 ∈ ( 2 [,) +∞ ) → 1 ≤ ( 𝑋 / 2 ) )

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 1 mullidi ( 1 · 2 ) = 2
3 2re 2 ∈ ℝ
4 3 rexri 2 ∈ ℝ*
5 4 a1i ( 𝑋 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ* )
6 pnfxr +∞ ∈ ℝ*
7 6 a1i ( 𝑋 ∈ ( 2 [,) +∞ ) → +∞ ∈ ℝ* )
8 id ( 𝑋 ∈ ( 2 [,) +∞ ) → 𝑋 ∈ ( 2 [,) +∞ ) )
9 5 7 8 icogelbd ( 𝑋 ∈ ( 2 [,) +∞ ) → 2 ≤ 𝑋 )
10 2 9 eqbrtrid ( 𝑋 ∈ ( 2 [,) +∞ ) → ( 1 · 2 ) ≤ 𝑋 )
11 1red ( 𝑋 ∈ ( 2 [,) +∞ ) → 1 ∈ ℝ )
12 0le2 0 ≤ 2
13 0xr 0 ∈ ℝ*
14 13 a1i ( 0 ≤ 2 → 0 ∈ ℝ* )
15 6 a1i ( 0 ≤ 2 → +∞ ∈ ℝ* )
16 id ( 0 ≤ 2 → 0 ≤ 2 )
17 14 15 16 icossico2d ( 0 ≤ 2 → ( 2 [,) +∞ ) ⊆ ( 0 [,) +∞ ) )
18 12 17 ax-mp ( 2 [,) +∞ ) ⊆ ( 0 [,) +∞ )
19 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
20 18 19 sstri ( 2 [,) +∞ ) ⊆ ℝ
21 20 sseli ( 𝑋 ∈ ( 2 [,) +∞ ) → 𝑋 ∈ ℝ )
22 2rp 2 ∈ ℝ+
23 22 a1i ( 𝑋 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ+ )
24 11 21 23 lemuldivd ( 𝑋 ∈ ( 2 [,) +∞ ) → ( ( 1 · 2 ) ≤ 𝑋 ↔ 1 ≤ ( 𝑋 / 2 ) ) )
25 10 24 mpbid ( 𝑋 ∈ ( 2 [,) +∞ ) → 1 ≤ ( 𝑋 / 2 ) )