| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cn |
⊢ 2 ∈ ℂ |
| 2 |
1
|
mullidi |
⊢ ( 1 · 2 ) = 2 |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
3
|
rexri |
⊢ 2 ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ* ) |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → +∞ ∈ ℝ* ) |
| 8 |
|
id |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → 𝑋 ∈ ( 2 [,) +∞ ) ) |
| 9 |
5 7 8
|
icogelbd |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → 2 ≤ 𝑋 ) |
| 10 |
2 9
|
eqbrtrid |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → ( 1 · 2 ) ≤ 𝑋 ) |
| 11 |
|
1red |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → 1 ∈ ℝ ) |
| 12 |
|
0le2 |
⊢ 0 ≤ 2 |
| 13 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 14 |
13
|
a1i |
⊢ ( 0 ≤ 2 → 0 ∈ ℝ* ) |
| 15 |
6
|
a1i |
⊢ ( 0 ≤ 2 → +∞ ∈ ℝ* ) |
| 16 |
|
id |
⊢ ( 0 ≤ 2 → 0 ≤ 2 ) |
| 17 |
14 15 16
|
icossico2d |
⊢ ( 0 ≤ 2 → ( 2 [,) +∞ ) ⊆ ( 0 [,) +∞ ) ) |
| 18 |
12 17
|
ax-mp |
⊢ ( 2 [,) +∞ ) ⊆ ( 0 [,) +∞ ) |
| 19 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 20 |
18 19
|
sstri |
⊢ ( 2 [,) +∞ ) ⊆ ℝ |
| 21 |
20
|
sseli |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → 𝑋 ∈ ℝ ) |
| 22 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 23 |
22
|
a1i |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ+ ) |
| 24 |
11 21 23
|
lemuldivd |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → ( ( 1 · 2 ) ≤ 𝑋 ↔ 1 ≤ ( 𝑋 / 2 ) ) ) |
| 25 |
10 24
|
mpbid |
⊢ ( 𝑋 ∈ ( 2 [,) +∞ ) → 1 ≤ ( 𝑋 / 2 ) ) |