| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 2 |
1
|
rehalfcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ ) |
| 3 |
2
|
ceilcld |
⊢ ( 𝑁 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 4 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 5 |
|
1le1 |
⊢ 1 ≤ 1 |
| 6 |
|
fvoveq1 |
⊢ ( 𝑁 = 1 → ( ⌈ ‘ ( 𝑁 / 2 ) ) = ( ⌈ ‘ ( 1 / 2 ) ) ) |
| 7 |
|
ceilhalf1 |
⊢ ( ⌈ ‘ ( 1 / 2 ) ) = 1 |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ⌈ ‘ ( 𝑁 / 2 ) ) = 1 ) |
| 9 |
5 8
|
breqtrrid |
⊢ ( 𝑁 = 1 → 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 10 |
|
1red |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
| 11 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ ) |
| 12 |
11
|
rehalfcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 13 |
12
|
ceilcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 14 |
13
|
zred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
| 15 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) |
| 16 |
|
2re |
⊢ 2 ∈ ℝ |
| 17 |
|
elicopnf |
⊢ ( 2 ∈ ℝ → ( 𝑁 ∈ ( 2 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁 ) ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( 𝑁 ∈ ( 2 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁 ) ) |
| 19 |
11 15 18
|
sylanbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ( 2 [,) +∞ ) ) |
| 20 |
|
rehalfge1 |
⊢ ( 𝑁 ∈ ( 2 [,) +∞ ) → 1 ≤ ( 𝑁 / 2 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ ( 𝑁 / 2 ) ) |
| 22 |
12
|
ceilged |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 2 ) ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 23 |
10 12 14 21 22
|
letrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 24 |
9 23
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 25 |
4 24
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 26 |
|
elnnz1 |
⊢ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ↔ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 27 |
3 25 26
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ) |