| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 2 |
1
|
rehalfcld |
|- ( N e. NN -> ( N / 2 ) e. RR ) |
| 3 |
2
|
ceilcld |
|- ( N e. NN -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
| 4 |
|
elnn1uz2 |
|- ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
| 5 |
|
1le1 |
|- 1 <_ 1 |
| 6 |
|
fvoveq1 |
|- ( N = 1 -> ( |^ ` ( N / 2 ) ) = ( |^ ` ( 1 / 2 ) ) ) |
| 7 |
|
ceilhalf1 |
|- ( |^ ` ( 1 / 2 ) ) = 1 |
| 8 |
6 7
|
eqtrdi |
|- ( N = 1 -> ( |^ ` ( N / 2 ) ) = 1 ) |
| 9 |
5 8
|
breqtrrid |
|- ( N = 1 -> 1 <_ ( |^ ` ( N / 2 ) ) ) |
| 10 |
|
1red |
|- ( N e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
| 11 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
| 12 |
11
|
rehalfcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) e. RR ) |
| 13 |
12
|
ceilcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
| 14 |
13
|
zred |
|- ( N e. ( ZZ>= ` 2 ) -> ( |^ ` ( N / 2 ) ) e. RR ) |
| 15 |
|
eluzle |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
| 16 |
|
2re |
|- 2 e. RR |
| 17 |
|
elicopnf |
|- ( 2 e. RR -> ( N e. ( 2 [,) +oo ) <-> ( N e. RR /\ 2 <_ N ) ) ) |
| 18 |
16 17
|
ax-mp |
|- ( N e. ( 2 [,) +oo ) <-> ( N e. RR /\ 2 <_ N ) ) |
| 19 |
11 15 18
|
sylanbrc |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ( 2 [,) +oo ) ) |
| 20 |
|
rehalfge1 |
|- ( N e. ( 2 [,) +oo ) -> 1 <_ ( N / 2 ) ) |
| 21 |
19 20
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> 1 <_ ( N / 2 ) ) |
| 22 |
12
|
ceilged |
|- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( |^ ` ( N / 2 ) ) ) |
| 23 |
10 12 14 21 22
|
letrd |
|- ( N e. ( ZZ>= ` 2 ) -> 1 <_ ( |^ ` ( N / 2 ) ) ) |
| 24 |
9 23
|
jaoi |
|- ( ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) -> 1 <_ ( |^ ` ( N / 2 ) ) ) |
| 25 |
4 24
|
sylbi |
|- ( N e. NN -> 1 <_ ( |^ ` ( N / 2 ) ) ) |
| 26 |
|
elnnz1 |
|- ( ( |^ ` ( N / 2 ) ) e. NN <-> ( ( |^ ` ( N / 2 ) ) e. ZZ /\ 1 <_ ( |^ ` ( N / 2 ) ) ) ) |
| 27 |
3 25 26
|
sylanbrc |
|- ( N e. NN -> ( |^ ` ( N / 2 ) ) e. NN ) |