Metamath Proof Explorer


Theorem 1elfzo1ceilhalf1

Description: 1 is in the half-open integer range from 1 to the ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion 1elfzo1ceilhalf1
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 1nn
 |-  1 e. NN
2 1 a1i
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. NN )
3 eluzge3nn
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN )
4 ceilhalfnn
 |-  ( N e. NN -> ( |^ ` ( N / 2 ) ) e. NN )
5 3 4 syl
 |-  ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. NN )
6 ceilhalfgt1
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 < ( |^ ` ( N / 2 ) ) )
7 elfzo1
 |-  ( 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) <-> ( 1 e. NN /\ ( |^ ` ( N / 2 ) ) e. NN /\ 1 < ( |^ ` ( N / 2 ) ) ) )
8 2 5 6 7 syl3anbrc
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )