| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgprismgr4cycl.p |
|- P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> |
| 2 |
|
gpgprismgr4cycl.f |
|- F = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> |
| 3 |
|
gpgprismgr4cycl.g |
|- G = ( N gPetersenGr 1 ) |
| 4 |
3
|
fveq2i |
|- ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr 1 ) ) |
| 5 |
4
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr 1 ) ) ) |
| 6 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 7 |
|
1elfzo1ceilhalf1 |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 8 |
6 7
|
jca |
|- ( N e. ( ZZ>= ` 3 ) -> ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
| 9 |
8
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
| 10 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 11 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 12 |
10 11
|
gpgiedg |
|- ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr 1 ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ) |
| 13 |
9 12
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( iEdg ` ( N gPetersenGr 1 ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ) |
| 14 |
5 13
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( iEdg ` G ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ) |
| 15 |
14
|
fveq1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` X ) ) = ( ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ` ( F ` X ) ) ) |
| 16 |
2
|
gpgprismgr4cycllem3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ 4 ) ) -> ( ( F ` X ) e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ E. x e. ( 0 ..^ N ) ( ( F ` X ) = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ ( F ` X ) = { <. 0 , x >. , <. 1 , x >. } \/ ( F ` X ) = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) |
| 17 |
2
|
gpgprismgr4cycllem1 |
|- ( # ` F ) = 4 |
| 18 |
17
|
oveq2i |
|- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) |
| 19 |
18
|
eleq2i |
|- ( X e. ( 0 ..^ ( # ` F ) ) <-> X e. ( 0 ..^ 4 ) ) |
| 20 |
19
|
anbi2i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) <-> ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ 4 ) ) ) |
| 21 |
|
eqeq1 |
|- ( e = ( F ` X ) -> ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> ( F ` X ) = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) ) |
| 22 |
|
eqeq1 |
|- ( e = ( F ` X ) -> ( e = { <. 0 , x >. , <. 1 , x >. } <-> ( F ` X ) = { <. 0 , x >. , <. 1 , x >. } ) ) |
| 23 |
|
eqeq1 |
|- ( e = ( F ` X ) -> ( e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } <-> ( F ` X ) = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) |
| 24 |
21 22 23
|
3orbi123d |
|- ( e = ( F ` X ) -> ( ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) <-> ( ( F ` X ) = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ ( F ` X ) = { <. 0 , x >. , <. 1 , x >. } \/ ( F ` X ) = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) |
| 25 |
24
|
rexbidv |
|- ( e = ( F ` X ) -> ( E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) <-> E. x e. ( 0 ..^ N ) ( ( F ` X ) = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ ( F ` X ) = { <. 0 , x >. , <. 1 , x >. } \/ ( F ` X ) = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) |
| 26 |
25
|
elrab |
|- ( ( F ` X ) e. { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } <-> ( ( F ` X ) e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ E. x e. ( 0 ..^ N ) ( ( F ` X ) = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ ( F ` X ) = { <. 0 , x >. , <. 1 , x >. } \/ ( F ` X ) = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) |
| 27 |
16 20 26
|
3imtr4i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` X ) e. { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) |
| 28 |
|
fvresi |
|- ( ( F ` X ) e. { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } -> ( ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ` ( F ` X ) ) = ( F ` X ) ) |
| 29 |
27 28
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ` ( F ` X ) ) = ( F ` X ) ) |
| 30 |
15 29
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` X ) ) = ( F ` X ) ) |
| 31 |
|
fzo0to42pr |
|- ( 0 ..^ 4 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 32 |
31
|
eleq2i |
|- ( X e. ( 0 ..^ 4 ) <-> X e. ( { 0 , 1 } u. { 2 , 3 } ) ) |
| 33 |
|
elun |
|- ( X e. ( { 0 , 1 } u. { 2 , 3 } ) <-> ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) ) |
| 34 |
19 32 33
|
3bitri |
|- ( X e. ( 0 ..^ ( # ` F ) ) <-> ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) ) |
| 35 |
|
elpri |
|- ( X e. { 0 , 1 } -> ( X = 0 \/ X = 1 ) ) |
| 36 |
|
prex |
|- { <. 0 , 0 >. , <. 0 , 1 >. } e. _V |
| 37 |
|
s4fv0 |
|- ( { <. 0 , 0 >. , <. 0 , 1 >. } e. _V -> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 0 ) = { <. 0 , 0 >. , <. 0 , 1 >. } ) |
| 38 |
36 37
|
ax-mp |
|- ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 0 ) = { <. 0 , 0 >. , <. 0 , 1 >. } |
| 39 |
2
|
fveq1i |
|- ( F ` 0 ) = ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 0 ) |
| 40 |
1
|
fveq1i |
|- ( P ` 0 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 0 ) |
| 41 |
|
opex |
|- <. 0 , 0 >. e. _V |
| 42 |
|
df-s5 |
|- <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ++ <" <. 0 , 0 >. "> ) |
| 43 |
|
s4cli |
|- <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> e. Word _V |
| 44 |
|
s4len |
|- ( # ` <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ) = 4 |
| 45 |
|
s4fv0 |
|- ( <. 0 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 0 ) = <. 0 , 0 >. ) |
| 46 |
|
0nn0 |
|- 0 e. NN0 |
| 47 |
|
4pos |
|- 0 < 4 |
| 48 |
42 43 44 45 46 47
|
cats1fv |
|- ( <. 0 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 0 ) = <. 0 , 0 >. ) |
| 49 |
41 48
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 0 ) = <. 0 , 0 >. |
| 50 |
40 49
|
eqtri |
|- ( P ` 0 ) = <. 0 , 0 >. |
| 51 |
1
|
fveq1i |
|- ( P ` 1 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 1 ) |
| 52 |
|
opex |
|- <. 0 , 1 >. e. _V |
| 53 |
|
s4fv1 |
|- ( <. 0 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 1 ) = <. 0 , 1 >. ) |
| 54 |
|
1nn0 |
|- 1 e. NN0 |
| 55 |
|
1lt4 |
|- 1 < 4 |
| 56 |
42 43 44 53 54 55
|
cats1fv |
|- ( <. 0 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 1 ) = <. 0 , 1 >. ) |
| 57 |
52 56
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 1 ) = <. 0 , 1 >. |
| 58 |
51 57
|
eqtri |
|- ( P ` 1 ) = <. 0 , 1 >. |
| 59 |
50 58
|
preq12i |
|- { ( P ` 0 ) , ( P ` 1 ) } = { <. 0 , 0 >. , <. 0 , 1 >. } |
| 60 |
38 39 59
|
3eqtr4i |
|- ( F ` 0 ) = { ( P ` 0 ) , ( P ` 1 ) } |
| 61 |
|
fveq2 |
|- ( X = 0 -> ( F ` X ) = ( F ` 0 ) ) |
| 62 |
|
fveq2 |
|- ( X = 0 -> ( P ` X ) = ( P ` 0 ) ) |
| 63 |
|
fv0p1e1 |
|- ( X = 0 -> ( P ` ( X + 1 ) ) = ( P ` 1 ) ) |
| 64 |
62 63
|
preq12d |
|- ( X = 0 -> { ( P ` X ) , ( P ` ( X + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 65 |
60 61 64
|
3eqtr4a |
|- ( X = 0 -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 66 |
|
prex |
|- { <. 0 , 1 >. , <. 1 , 1 >. } e. _V |
| 67 |
|
s4fv1 |
|- ( { <. 0 , 1 >. , <. 1 , 1 >. } e. _V -> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 1 ) = { <. 0 , 1 >. , <. 1 , 1 >. } ) |
| 68 |
66 67
|
ax-mp |
|- ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 1 ) = { <. 0 , 1 >. , <. 1 , 1 >. } |
| 69 |
2
|
fveq1i |
|- ( F ` 1 ) = ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 1 ) |
| 70 |
1
|
fveq1i |
|- ( P ` 2 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 2 ) |
| 71 |
|
opex |
|- <. 1 , 1 >. e. _V |
| 72 |
|
s4fv2 |
|- ( <. 1 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 2 ) = <. 1 , 1 >. ) |
| 73 |
|
2nn0 |
|- 2 e. NN0 |
| 74 |
|
2lt4 |
|- 2 < 4 |
| 75 |
42 43 44 72 73 74
|
cats1fv |
|- ( <. 1 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 2 ) = <. 1 , 1 >. ) |
| 76 |
71 75
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 2 ) = <. 1 , 1 >. |
| 77 |
70 76
|
eqtri |
|- ( P ` 2 ) = <. 1 , 1 >. |
| 78 |
58 77
|
preq12i |
|- { ( P ` 1 ) , ( P ` 2 ) } = { <. 0 , 1 >. , <. 1 , 1 >. } |
| 79 |
68 69 78
|
3eqtr4i |
|- ( F ` 1 ) = { ( P ` 1 ) , ( P ` 2 ) } |
| 80 |
|
fveq2 |
|- ( X = 1 -> ( F ` X ) = ( F ` 1 ) ) |
| 81 |
|
fveq2 |
|- ( X = 1 -> ( P ` X ) = ( P ` 1 ) ) |
| 82 |
|
oveq1 |
|- ( X = 1 -> ( X + 1 ) = ( 1 + 1 ) ) |
| 83 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 84 |
82 83
|
eqtrdi |
|- ( X = 1 -> ( X + 1 ) = 2 ) |
| 85 |
84
|
fveq2d |
|- ( X = 1 -> ( P ` ( X + 1 ) ) = ( P ` 2 ) ) |
| 86 |
81 85
|
preq12d |
|- ( X = 1 -> { ( P ` X ) , ( P ` ( X + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 87 |
79 80 86
|
3eqtr4a |
|- ( X = 1 -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 88 |
65 87
|
jaoi |
|- ( ( X = 0 \/ X = 1 ) -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 89 |
35 88
|
syl |
|- ( X e. { 0 , 1 } -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 90 |
|
elpri |
|- ( X e. { 2 , 3 } -> ( X = 2 \/ X = 3 ) ) |
| 91 |
|
prex |
|- { <. 1 , 1 >. , <. 1 , 0 >. } e. _V |
| 92 |
|
s4fv2 |
|- ( { <. 1 , 1 >. , <. 1 , 0 >. } e. _V -> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 2 ) = { <. 1 , 1 >. , <. 1 , 0 >. } ) |
| 93 |
91 92
|
ax-mp |
|- ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 2 ) = { <. 1 , 1 >. , <. 1 , 0 >. } |
| 94 |
2
|
fveq1i |
|- ( F ` 2 ) = ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 2 ) |
| 95 |
1
|
fveq1i |
|- ( P ` 3 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 3 ) |
| 96 |
|
opex |
|- <. 1 , 0 >. e. _V |
| 97 |
|
s4fv3 |
|- ( <. 1 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 3 ) = <. 1 , 0 >. ) |
| 98 |
|
3nn0 |
|- 3 e. NN0 |
| 99 |
|
3lt4 |
|- 3 < 4 |
| 100 |
42 43 44 97 98 99
|
cats1fv |
|- ( <. 1 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 3 ) = <. 1 , 0 >. ) |
| 101 |
96 100
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 3 ) = <. 1 , 0 >. |
| 102 |
95 101
|
eqtri |
|- ( P ` 3 ) = <. 1 , 0 >. |
| 103 |
77 102
|
preq12i |
|- { ( P ` 2 ) , ( P ` 3 ) } = { <. 1 , 1 >. , <. 1 , 0 >. } |
| 104 |
93 94 103
|
3eqtr4i |
|- ( F ` 2 ) = { ( P ` 2 ) , ( P ` 3 ) } |
| 105 |
|
fveq2 |
|- ( X = 2 -> ( F ` X ) = ( F ` 2 ) ) |
| 106 |
|
fveq2 |
|- ( X = 2 -> ( P ` X ) = ( P ` 2 ) ) |
| 107 |
|
oveq1 |
|- ( X = 2 -> ( X + 1 ) = ( 2 + 1 ) ) |
| 108 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 109 |
107 108
|
eqtrdi |
|- ( X = 2 -> ( X + 1 ) = 3 ) |
| 110 |
109
|
fveq2d |
|- ( X = 2 -> ( P ` ( X + 1 ) ) = ( P ` 3 ) ) |
| 111 |
106 110
|
preq12d |
|- ( X = 2 -> { ( P ` X ) , ( P ` ( X + 1 ) ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
| 112 |
104 105 111
|
3eqtr4a |
|- ( X = 2 -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 113 |
|
prex |
|- { <. 1 , 0 >. , <. 0 , 0 >. } e. _V |
| 114 |
|
s4fv3 |
|- ( { <. 1 , 0 >. , <. 0 , 0 >. } e. _V -> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 3 ) = { <. 1 , 0 >. , <. 0 , 0 >. } ) |
| 115 |
113 114
|
ax-mp |
|- ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 3 ) = { <. 1 , 0 >. , <. 0 , 0 >. } |
| 116 |
2
|
fveq1i |
|- ( F ` 3 ) = ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ` 3 ) |
| 117 |
1
|
fveq1i |
|- ( P ` 4 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 4 ) |
| 118 |
42 43 44
|
cats1fvn |
|- ( <. 0 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 4 ) = <. 0 , 0 >. ) |
| 119 |
41 118
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 4 ) = <. 0 , 0 >. |
| 120 |
117 119
|
eqtri |
|- ( P ` 4 ) = <. 0 , 0 >. |
| 121 |
102 120
|
preq12i |
|- { ( P ` 3 ) , ( P ` 4 ) } = { <. 1 , 0 >. , <. 0 , 0 >. } |
| 122 |
115 116 121
|
3eqtr4i |
|- ( F ` 3 ) = { ( P ` 3 ) , ( P ` 4 ) } |
| 123 |
|
fveq2 |
|- ( X = 3 -> ( F ` X ) = ( F ` 3 ) ) |
| 124 |
|
fveq2 |
|- ( X = 3 -> ( P ` X ) = ( P ` 3 ) ) |
| 125 |
|
oveq1 |
|- ( X = 3 -> ( X + 1 ) = ( 3 + 1 ) ) |
| 126 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 127 |
125 126
|
eqtrdi |
|- ( X = 3 -> ( X + 1 ) = 4 ) |
| 128 |
127
|
fveq2d |
|- ( X = 3 -> ( P ` ( X + 1 ) ) = ( P ` 4 ) ) |
| 129 |
124 128
|
preq12d |
|- ( X = 3 -> { ( P ` X ) , ( P ` ( X + 1 ) ) } = { ( P ` 3 ) , ( P ` 4 ) } ) |
| 130 |
122 123 129
|
3eqtr4a |
|- ( X = 3 -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 131 |
112 130
|
jaoi |
|- ( ( X = 2 \/ X = 3 ) -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 132 |
90 131
|
syl |
|- ( X e. { 2 , 3 } -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 133 |
89 132
|
jaoi |
|- ( ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 134 |
34 133
|
sylbi |
|- ( X e. ( 0 ..^ ( # ` F ) ) -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 135 |
134
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` X ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |
| 136 |
30 135
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` X ) ) = { ( P ` X ) , ( P ` ( X + 1 ) ) } ) |