| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgprismgr4cycl.p |
|- P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> |
| 2 |
|
gpgprismgr4cycl.f |
|- F = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> |
| 3 |
|
gpgprismgr4cycl.g |
|- G = ( N gPetersenGr 1 ) |
| 4 |
1
|
gpgprismgr4cycllem5 |
|- P e. Word _V |
| 5 |
4
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> P e. Word _V ) |
| 6 |
1
|
gpgprismgr4cycllem4 |
|- ( # ` P ) = 5 |
| 7 |
6
|
oveq1i |
|- ( ( # ` P ) - 1 ) = ( 5 - 1 ) |
| 8 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
| 9 |
7 8
|
eqtri |
|- ( ( # ` P ) - 1 ) = 4 |
| 10 |
9
|
eqcomi |
|- 4 = ( ( # ` P ) - 1 ) |
| 11 |
1
|
gpgprismgr4cycllem7 |
|- ( ( x e. ( 0 ..^ ( # ` P ) ) /\ y e. ( 1 ..^ 4 ) ) -> ( x =/= y -> ( P ` x ) =/= ( P ` y ) ) ) |
| 12 |
11
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( x e. ( 0 ..^ ( # ` P ) ) /\ y e. ( 1 ..^ 4 ) ) ) -> ( x =/= y -> ( P ` x ) =/= ( P ` y ) ) ) |
| 13 |
12
|
ralrimivva |
|- ( N e. ( ZZ>= ` 3 ) -> A. x e. ( 0 ..^ ( # ` P ) ) A. y e. ( 1 ..^ 4 ) ( x =/= y -> ( P ` x ) =/= ( P ` y ) ) ) |
| 14 |
2
|
gpgprismgr4cycllem1 |
|- ( # ` F ) = 4 |
| 15 |
1 2 3
|
gpgprismgr4cycllem8 |
|- ( N e. ( ZZ>= ` 3 ) -> F e. Word dom ( iEdg ` G ) ) |
| 16 |
1 2 3
|
gpgprismgr4cycllem9 |
|- ( N e. ( ZZ>= ` 3 ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 17 |
1 2 3
|
gpgprismgr4cycllem10 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ x e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) |
| 18 |
17
|
ralrimiva |
|- ( N e. ( ZZ>= ` 3 ) -> A. x e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) |
| 19 |
|
gpgprismgrusgra |
|- ( N e. ( ZZ>= ` 3 ) -> ( N gPetersenGr 1 ) e. USGraph ) |
| 20 |
3
|
eleq1i |
|- ( G e. USGraph <-> ( N gPetersenGr 1 ) e. USGraph ) |
| 21 |
|
usgrupgr |
|- ( G e. USGraph -> G e. UPGraph ) |
| 22 |
20 21
|
sylbir |
|- ( ( N gPetersenGr 1 ) e. USGraph -> G e. UPGraph ) |
| 23 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 24 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 25 |
23 24
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. x e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) ) |
| 26 |
19 22 25
|
3syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. x e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) ) |
| 27 |
15 16 18 26
|
mpbir3and |
|- ( N e. ( ZZ>= ` 3 ) -> F ( Walks ` G ) P ) |
| 28 |
2
|
gpgprismgr4cycllem2 |
|- Fun `' F |
| 29 |
|
istrl |
|- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
| 30 |
27 28 29
|
sylanblrc |
|- ( N e. ( ZZ>= ` 3 ) -> F ( Trails ` G ) P ) |
| 31 |
5 10 13 14 30
|
pthd |
|- ( N e. ( ZZ>= ` 3 ) -> F ( Paths ` G ) P ) |
| 32 |
1
|
gpgprismgr4cycllem6 |
|- ( P ` 0 ) = ( P ` 4 ) |
| 33 |
14
|
eqcomi |
|- 4 = ( # ` F ) |
| 34 |
33
|
fveq2i |
|- ( P ` 4 ) = ( P ` ( # ` F ) ) |
| 35 |
32 34
|
eqtri |
|- ( P ` 0 ) = ( P ` ( # ` F ) ) |
| 36 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 37 |
31 35 36
|
sylanblrc |
|- ( N e. ( ZZ>= ` 3 ) -> F ( Cycles ` G ) P ) |