| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgprismgr4cycl.p |
|- P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> |
| 2 |
|
gpgprismgr4cycl.f |
|- F = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> |
| 3 |
|
gpgprismgr4cycl.g |
|- G = ( N gPetersenGr 1 ) |
| 4 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 5 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
| 6 |
4 5
|
sylibr |
|- ( N e. ( ZZ>= ` 3 ) -> 0 e. ( 0 ..^ N ) ) |
| 7 |
|
1nn0 |
|- 1 e. NN0 |
| 8 |
7
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. NN0 ) |
| 9 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 10 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
| 11 |
|
eluz2gt1 |
|- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
| 12 |
10 11
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> 1 < N ) |
| 13 |
|
elfzo0z |
|- ( 1 e. ( 0 ..^ N ) <-> ( 1 e. NN0 /\ N e. ZZ /\ 1 < N ) ) |
| 14 |
8 9 12 13
|
syl3anbrc |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 0 ..^ N ) ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
15
|
prid1 |
|- 0 e. { 0 , 1 } |
| 17 |
16
|
a1i |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> 0 e. { 0 , 1 } ) |
| 18 |
|
simpl |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> 0 e. ( 0 ..^ N ) ) |
| 19 |
17 18
|
opelxpd |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> <. 0 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 20 |
|
simpr |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> 1 e. ( 0 ..^ N ) ) |
| 21 |
17 20
|
opelxpd |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> <. 0 , 1 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 22 |
|
1ex |
|- 1 e. _V |
| 23 |
22
|
prid2 |
|- 1 e. { 0 , 1 } |
| 24 |
23
|
a1i |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> 1 e. { 0 , 1 } ) |
| 25 |
24 20
|
opelxpd |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> <. 1 , 1 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 26 |
24 18
|
opelxpd |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 27 |
19 21 25 26 19
|
s5cld |
|- ( ( 0 e. ( 0 ..^ N ) /\ 1 e. ( 0 ..^ N ) ) -> <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 28 |
6 14 27
|
syl2anc |
|- ( N e. ( ZZ>= ` 3 ) -> <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 29 |
3
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr 1 ) ) |
| 30 |
|
1elfzo1ceilhalf1 |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 31 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 32 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 33 |
31 32
|
gpgvtx |
|- ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 34 |
4 30 33
|
syl2anc |
|- ( N e. ( ZZ>= ` 3 ) -> ( Vtx ` ( N gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 35 |
29 34
|
eqtrid |
|- ( N e. ( ZZ>= ` 3 ) -> ( Vtx ` G ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 36 |
|
wrdeq |
|- ( ( Vtx ` G ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> Word ( Vtx ` G ) = Word ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 37 |
35 36
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> Word ( Vtx ` G ) = Word ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 38 |
28 37
|
eleqtrrd |
|- ( N e. ( ZZ>= ` 3 ) -> <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word ( Vtx ` G ) ) |
| 39 |
1 38
|
eqeltrid |
|- ( N e. ( ZZ>= ` 3 ) -> P e. Word ( Vtx ` G ) ) |
| 40 |
|
wrdf |
|- ( P e. Word ( Vtx ` G ) -> P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) ) |
| 41 |
39 40
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) ) |
| 42 |
|
4z |
|- 4 e. ZZ |
| 43 |
|
fzval3 |
|- ( 4 e. ZZ -> ( 0 ... 4 ) = ( 0 ..^ ( 4 + 1 ) ) ) |
| 44 |
42 43
|
ax-mp |
|- ( 0 ... 4 ) = ( 0 ..^ ( 4 + 1 ) ) |
| 45 |
2
|
gpgprismgr4cycllem1 |
|- ( # ` F ) = 4 |
| 46 |
45
|
oveq2i |
|- ( 0 ... ( # ` F ) ) = ( 0 ... 4 ) |
| 47 |
1
|
gpgprismgr4cycllem4 |
|- ( # ` P ) = 5 |
| 48 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 49 |
47 48
|
eqtri |
|- ( # ` P ) = ( 4 + 1 ) |
| 50 |
49
|
oveq2i |
|- ( 0 ..^ ( # ` P ) ) = ( 0 ..^ ( 4 + 1 ) ) |
| 51 |
44 46 50
|
3eqtr4i |
|- ( 0 ... ( # ` F ) ) = ( 0 ..^ ( # ` P ) ) |
| 52 |
51
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( # ` P ) ) ) |
| 53 |
52
|
feq2d |
|- ( N e. ( ZZ>= ` 3 ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) <-> P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) ) ) |
| 54 |
41 53
|
mpbird |
|- ( N e. ( ZZ>= ` 3 ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |