Metamath Proof Explorer


Theorem gpgprismgr4cycllem4

Description: Lemma 4 for gpgprismgr4cycl0 : the cycle <. P , F >. consists of 5 vertices (the first and the last vertex are identical, see gpgprismgr4cycllem6 . (Contributed by AV, 1-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycl.p
|- P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. ">
Assertion gpgprismgr4cycllem4
|- ( # ` P ) = 5

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p
 |-  P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. ">
2 1 fveq2i
 |-  ( # ` P ) = ( # ` <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> )
3 s5len
 |-  ( # ` <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) = 5
4 2 3 eqtri
 |-  ( # ` P ) = 5