Metamath Proof Explorer


Theorem gpgprismgr4cycllem4

Description: Lemma 4 for gpgprismgr4cycl0 : the cycle <. P , F >. consists of 5 vertices (the first and the last vertex are identical, see gpgprismgr4cycllem6 . (Contributed by AV, 1-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
Assertion gpgprismgr4cycllem4 ( ♯ ‘ 𝑃 ) = 5

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
2 1 fveq2i ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ )
3 s5len ( ♯ ‘ ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩ ) = 5
4 2 3 eqtri ( ♯ ‘ 𝑃 ) = 5