Metamath Proof Explorer


Theorem gpgprismgr4cycl0

Description: The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex <. 0 , 0 >. . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p
|- P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. ">
gpgprismgr4cycl.f
|- F = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } ">
gpgprismgr4cycl.g
|- G = ( N gPetersenGr 1 )
Assertion gpgprismgr4cycl0
|- ( N e. ( ZZ>= ` 3 ) -> ( F ( Cycles ` G ) P /\ ( # ` F ) = 4 ) )

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p
 |-  P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. ">
2 gpgprismgr4cycl.f
 |-  F = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } ">
3 gpgprismgr4cycl.g
 |-  G = ( N gPetersenGr 1 )
4 1 2 3 gpgprismgr4cycllem11
 |-  ( N e. ( ZZ>= ` 3 ) -> F ( Cycles ` G ) P )
5 2 gpgprismgr4cycllem1
 |-  ( # ` F ) = 4
6 4 5 jctir
 |-  ( N e. ( ZZ>= ` 3 ) -> ( F ( Cycles ` G ) P /\ ( # ` F ) = 4 ) )