Metamath Proof Explorer


Theorem gpgprismgr4cyclex

Description: The generalized Petersen graphs G(N,1), which are the N-prisms, have (at least) one cycle of length 4. (Contributed by AV, 5-Nov-2025)

Ref Expression
Assertion gpgprismgr4cyclex
|- ( N e. ( ZZ>= ` 3 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) )

Proof

Step Hyp Ref Expression
1 s5cli
 |-  <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word _V
2 s4cli
 |-  <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> e. Word _V
3 1 2 pm3.2i
 |-  ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word _V /\ <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> e. Word _V )
4 eqid
 |-  <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. ">
5 eqid
 |-  <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } ">
6 eqid
 |-  ( N gPetersenGr 1 ) = ( N gPetersenGr 1 )
7 4 5 6 gpgprismgr4cycl0
 |-  ( N e. ( ZZ>= ` 3 ) -> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) )
8 breq12
 |-  ( ( f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> /\ p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) -> ( f ( Cycles ` ( N gPetersenGr 1 ) ) p <-> <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) )
9 8 ancoms
 |-  ( ( p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) -> ( f ( Cycles ` ( N gPetersenGr 1 ) ) p <-> <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) )
10 fveqeq2
 |-  ( f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> -> ( ( # ` f ) = 4 <-> ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) )
11 10 adantl
 |-  ( ( p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) -> ( ( # ` f ) = 4 <-> ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) )
12 9 11 anbi12d
 |-  ( ( p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) -> ( ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) <-> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) ) )
13 12 spc2egv
 |-  ( ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word _V /\ <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> e. Word _V ) -> ( ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) ) )
14 3 7 13 mpsyl
 |-  ( N e. ( ZZ>= ` 3 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) )