| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s5cli |
⊢ 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∈ Word V |
| 2 |
|
s4cli |
⊢ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ∈ Word V |
| 3 |
1 2
|
pm3.2i |
⊢ ( 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∈ Word V ∧ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ∈ Word V ) |
| 4 |
|
eqid |
⊢ 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 = 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 |
| 5 |
|
eqid |
⊢ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 |
| 6 |
|
eqid |
⊢ ( 𝑁 gPetersenGr 1 ) = ( 𝑁 gPetersenGr 1 ) |
| 7 |
4 5 6
|
gpgprismgr4cycl0 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∧ ( ♯ ‘ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) = 4 ) ) |
| 8 |
|
breq12 |
⊢ ( ( 𝑓 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ∧ 𝑝 = 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ) → ( 𝑓 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 𝑝 ↔ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ) ) |
| 9 |
8
|
ancoms |
⊢ ( ( 𝑝 = 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∧ 𝑓 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) → ( 𝑓 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 𝑝 ↔ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ) ) |
| 10 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 → ( ( ♯ ‘ 𝑓 ) = 4 ↔ ( ♯ ‘ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) = 4 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑝 = 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∧ 𝑓 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) → ( ( ♯ ‘ 𝑓 ) = 4 ↔ ( ♯ ‘ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) = 4 ) ) |
| 12 |
9 11
|
anbi12d |
⊢ ( ( 𝑝 = 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∧ 𝑓 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) → ( ( 𝑓 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ( 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∧ ( ♯ ‘ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) = 4 ) ) ) |
| 13 |
12
|
spc2egv |
⊢ ( ( 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∈ Word V ∧ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ∈ Word V ) → ( ( 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∧ ( ♯ ‘ 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 ) = 4 ) → ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ) ) |
| 14 |
3 7 13
|
mpsyl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 𝑁 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ) |