Metamath Proof Explorer


Theorem gpgprismgr4cyclex

Description: The generalized Petersen graphs G(N,1), which are the N-prisms, have (at least) one cycle of length 4. (Contributed by AV, 5-Nov-2025)

Ref Expression
Assertion gpgprismgr4cyclex Could not format assertion : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 s5cli ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ Word V
2 s4cli ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ Word V
3 1 2 pm3.2i ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ Word V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ Word V
4 eqid ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
5 eqid ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
6 eqid Could not format ( N gPetersenGr 1 ) = ( N gPetersenGr 1 ) : No typesetting found for |- ( N gPetersenGr 1 ) = ( N gPetersenGr 1 ) with typecode |-
7 4 5 6 gpgprismgr4cycl0 Could not format ( N e. ( ZZ>= ` 3 ) -> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) ) with typecode |-
8 breq12 Could not format ( ( f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> /\ p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) -> ( f ( Cycles ` ( N gPetersenGr 1 ) ) p <-> <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) ) : No typesetting found for |- ( ( f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> /\ p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) -> ( f ( Cycles ` ( N gPetersenGr 1 ) ) p <-> <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) ) with typecode |-
9 8 ancoms Could not format ( ( p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) -> ( f ( Cycles ` ( N gPetersenGr 1 ) ) p <-> <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) ) : No typesetting found for |- ( ( p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) -> ( f ( Cycles ` ( N gPetersenGr 1 ) ) p <-> <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ) ) with typecode |-
10 fveqeq2 f = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ f = 4 ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ = 4
11 10 adantl p = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ f = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ f = 4 ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ = 4
12 9 11 anbi12d Could not format ( ( p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) -> ( ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) <-> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) ) ) : No typesetting found for |- ( ( p = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ f = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) -> ( ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) <-> ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) ) ) with typecode |-
13 12 spc2egv Could not format ( ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word _V /\ <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> e. Word _V ) -> ( ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) ) ) : No typesetting found for |- ( ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> e. Word _V /\ <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> e. Word _V ) -> ( ( <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ( Cycles ` ( N gPetersenGr 1 ) ) <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> /\ ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) ) ) with typecode |-
14 3 7 13 mpsyl Could not format ( N e. ( ZZ>= ` 3 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> E. p E. f ( f ( Cycles ` ( N gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) ) with typecode |-