Metamath Proof Explorer


Theorem gpgprismgr4cycl0

Description: The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex <. 0 , 0 >. . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
gpgprismgr4cycl.g No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
Assertion gpgprismgr4cycl0 N 3 F Cycles G P F = 4

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
2 gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
3 gpgprismgr4cycl.g Could not format G = ( N gPetersenGr 1 ) : No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
4 1 2 3 gpgprismgr4cycllem11 N 3 F Cycles G P
5 2 gpgprismgr4cycllem1 F = 4
6 4 5 jctir N 3 F Cycles G P F = 4