Metamath Proof Explorer


Theorem gpgprismgr4cycllem1

Description: Lemma 1 for gpgprismgr4cycl0 : the cycle <. P , F >. consists of 4 edges (i.e., has length 4). (Contributed by AV, 1-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycllem1.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
Assertion gpgprismgr4cycllem1 F = 4

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycllem1.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
2 1 fveq2i F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
3 s4len ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ = 4
4 2 3 eqtri F = 4