Metamath Proof Explorer


Theorem gpgprismgr4cycllem2

Description: Lemma 2 for gpgprismgr4cycl0 : the cycle <. P , F >. is proper, i.e., it has no overlapping edges. (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycllem1.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
Assertion gpgprismgr4cycllem2 Fun F -1

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycllem1.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
2 prex 0 0 0 1 V
3 prex 0 1 1 1 V
4 2 3 pm3.2i 0 0 0 1 V 0 1 1 1 V
5 prex 1 1 1 0 V
6 prex 1 0 0 0 V
7 5 6 pm3.2i 1 1 1 0 V 1 0 0 0 V
8 4 7 pm3.2i 0 0 0 1 V 0 1 1 1 V 1 1 1 0 V 1 0 0 0 V
9 opex 0 0 V
10 opex 0 1 V
11 9 10 pm3.2i 0 0 V 0 1 V
12 opex 1 1 V
13 10 12 pm3.2i 0 1 V 1 1 V
14 11 13 pm3.2i 0 0 V 0 1 V 0 1 V 1 1 V
15 0ne1 0 1
16 15 olci 0 0 0 1
17 c0ex 0 V
18 17 17 opthne 0 0 0 1 0 0 0 1
19 16 18 mpbir 0 0 0 1
20 15 orci 0 1 0 1
21 17 17 opthne 0 0 1 1 0 1 0 1
22 20 21 mpbir 0 0 1 1
23 19 22 pm3.2i 0 0 0 1 0 0 1 1
24 23 orci 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1
25 prneimg 0 0 V 0 1 V 0 1 V 1 1 V 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1
26 14 24 25 mp2 0 0 0 1 0 1 1 1
27 opex 1 0 V
28 12 27 pm3.2i 1 1 V 1 0 V
29 11 28 pm3.2i 0 0 V 0 1 V 1 1 V 1 0 V
30 15 orci 0 1 0 0
31 17 17 opthne 0 0 1 0 0 1 0 0
32 30 31 mpbir 0 0 1 0
33 22 32 pm3.2i 0 0 1 1 0 0 1 0
34 33 orci 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0
35 prneimg 0 0 V 0 1 V 1 1 V 1 0 V 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0
36 29 34 35 mp2 0 0 0 1 1 1 1 0
37 27 9 pm3.2i 1 0 V 0 0 V
38 11 37 pm3.2i 0 0 V 0 1 V 1 0 V 0 0 V
39 ax-1ne0 1 0
40 39 olci 0 1 1 0
41 1ex 1 V
42 17 41 opthne 0 1 1 0 0 1 1 0
43 40 42 mpbir 0 1 1 0
44 39 olci 0 0 1 0
45 17 41 opthne 0 1 0 0 0 0 1 0
46 44 45 mpbir 0 1 0 0
47 43 46 pm3.2i 0 1 1 0 0 1 0 0
48 47 olci 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0
49 prneimg 0 0 V 0 1 V 1 0 V 0 0 V 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0
50 38 48 49 mp2 0 0 0 1 1 0 0 0
51 26 36 50 3pm3.2i 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0
52 13 28 pm3.2i 0 1 V 1 1 V 1 1 V 1 0 V
53 15 orci 0 1 1 1
54 17 41 opthne 0 1 1 1 0 1 1 1
55 53 54 mpbir 0 1 1 1
56 55 43 pm3.2i 0 1 1 1 0 1 1 0
57 56 orci 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0
58 prneimg 0 1 V 1 1 V 1 1 V 1 0 V 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0
59 52 57 58 mp2 0 1 1 1 1 1 1 0
60 13 37 pm3.2i 0 1 V 1 1 V 1 0 V 0 0 V
61 39 olci 1 1 1 0
62 41 41 opthne 1 1 1 0 1 1 1 0
63 61 62 mpbir 1 1 1 0
64 39 olci 1 0 1 0
65 41 41 opthne 1 1 0 0 1 0 1 0
66 64 65 mpbir 1 1 0 0
67 63 66 pm3.2i 1 1 1 0 1 1 0 0
68 67 olci 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0
69 prneimg 0 1 V 1 1 V 1 0 V 0 0 V 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0
70 60 68 69 mp2 0 1 1 1 1 0 0 0
71 28 37 pm3.2i 1 1 V 1 0 V 1 0 V 0 0 V
72 67 orci 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0
73 prneimg 1 1 V 1 0 V 1 0 V 0 0 V 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0
74 71 72 73 mp2 1 1 1 0 1 0 0 0
75 59 70 74 3pm3.2i 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0
76 51 75 pm3.2i 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0
77 8 76 pm3.2i 0 0 0 1 V 0 1 1 1 V 1 1 1 0 V 1 0 0 0 V 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0
78 s4f1o 0 0 0 1 V 0 1 1 1 V 1 1 1 0 V 1 0 0 0 V 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0
79 78 imp 0 0 0 1 V 0 1 1 1 V 1 1 1 0 V 1 0 0 0 V 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0
80 pm2.27 F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0
81 1 80 ax-mp F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0
82 df-f1o F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 F : dom F 1-1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 F : dom F onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0
83 df-f1 F : dom F 1-1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 F : dom F 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Fun F -1
84 83 simprbi F : dom F 1-1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Fun F -1
85 84 adantr F : dom F 1-1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 F : dom F onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Fun F -1
86 82 85 sylbi F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Fun F -1
87 81 86 syl F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ F : dom F 1-1 onto 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Fun F -1
88 77 79 87 mp2b Fun F -1