Metamath Proof Explorer


Theorem gpgprismgr4cycllem3

Description: Lemma 3 for gpgprismgr4cycl0 . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycllem1.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
Assertion gpgprismgr4cycllem3 N 3 X 0 ..^ 4 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycllem1.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
2 fzo0to42pr 0 ..^ 4 = 0 1 2 3
3 2 eleq2i X 0 ..^ 4 X 0 1 2 3
4 elun X 0 1 2 3 X 0 1 X 2 3
5 3 4 bitri X 0 ..^ 4 X 0 1 X 2 3
6 elpri X 0 1 X = 0 X = 1
7 c0ex 0 V
8 7 prid1 0 0 1
9 8 a1i N 3 0 0 1
10 eluzge3nn N 3 N
11 lbfzo0 0 0 ..^ N N
12 10 11 sylibr N 3 0 0 ..^ N
13 9 12 opelxpd N 3 0 0 0 1 × 0 ..^ N
14 1nn0 1 0
15 14 a1i N 3 1 0
16 uzuzle23 N 3 N 2
17 eluz2gt1 N 2 1 < N
18 16 17 syl N 3 1 < N
19 elfzo0 1 0 ..^ N 1 0 N 1 < N
20 15 10 18 19 syl3anbrc N 3 1 0 ..^ N
21 9 20 opelxpd N 3 0 1 0 1 × 0 ..^ N
22 prelpwi 0 0 0 1 × 0 ..^ N 0 1 0 1 × 0 ..^ N 0 0 0 1 𝒫 0 1 × 0 ..^ N
23 13 21 22 syl2anc N 3 0 0 0 1 𝒫 0 1 × 0 ..^ N
24 opeq2 x = 0 0 x = 0 0
25 oveq1 x = 0 x + 1 = 0 + 1
26 25 oveq1d x = 0 x + 1 mod N = 0 + 1 mod N
27 26 opeq2d x = 0 0 x + 1 mod N = 0 0 + 1 mod N
28 24 27 preq12d x = 0 0 x 0 x + 1 mod N = 0 0 0 0 + 1 mod N
29 28 eqeq2d x = 0 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 0 0 0 + 1 mod N
30 opeq2 x = 0 1 x = 1 0
31 24 30 preq12d x = 0 0 x 1 x = 0 0 1 0
32 31 eqeq2d x = 0 0 0 0 1 = 0 x 1 x 0 0 0 1 = 0 0 1 0
33 26 opeq2d x = 0 1 x + 1 mod N = 1 0 + 1 mod N
34 30 33 preq12d x = 0 1 x 1 x + 1 mod N = 1 0 1 0 + 1 mod N
35 34 eqeq2d x = 0 0 0 0 1 = 1 x 1 x + 1 mod N 0 0 0 1 = 1 0 1 0 + 1 mod N
36 29 32 35 3orbi123d x = 0 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N 0 0 0 1 = 0 0 0 0 + 1 mod N 0 0 0 1 = 0 0 1 0 0 0 0 1 = 1 0 1 0 + 1 mod N
37 eluzelre N 3 N
38 1mod N 1 < N 1 mod N = 1
39 37 18 38 syl2anc N 3 1 mod N = 1
40 1e0p1 1 = 0 + 1
41 40 oveq1i 1 mod N = 0 + 1 mod N
42 39 41 eqtr3di N 3 1 = 0 + 1 mod N
43 42 opeq2d N 3 0 1 = 0 0 + 1 mod N
44 43 preq2d N 3 0 0 0 1 = 0 0 0 0 + 1 mod N
45 44 3mix1d N 3 0 0 0 1 = 0 0 0 0 + 1 mod N 0 0 0 1 = 0 0 1 0 0 0 0 1 = 1 0 1 0 + 1 mod N
46 36 12 45 rspcedvdw N 3 x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N
47 23 46 jca N 3 0 0 0 1 𝒫 0 1 × 0 ..^ N x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N
48 fveq2 X = 0 F X = F 0
49 1 fveq1i F 0 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 0
50 prex 0 0 0 1 V
51 s4fv0 0 0 0 1 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 0 = 0 0 0 1
52 50 51 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 0 = 0 0 0 1
53 49 52 eqtri F 0 = 0 0 0 1
54 48 53 eqtrdi X = 0 F X = 0 0 0 1
55 54 eleq1d X = 0 F X 𝒫 0 1 × 0 ..^ N 0 0 0 1 𝒫 0 1 × 0 ..^ N
56 54 eqeq1d X = 0 F X = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 0 x + 1 mod N
57 54 eqeq1d X = 0 F X = 0 x 1 x 0 0 0 1 = 0 x 1 x
58 54 eqeq1d X = 0 F X = 1 x 1 x + 1 mod N 0 0 0 1 = 1 x 1 x + 1 mod N
59 56 57 58 3orbi123d X = 0 F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N
60 59 rexbidv X = 0 x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N
61 55 60 anbi12d X = 0 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 0 0 0 1 𝒫 0 1 × 0 ..^ N x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N
62 47 61 imbitrrid X = 0 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
63 1ex 1 V
64 63 prid2 1 0 1
65 64 a1i N 3 1 0 1
66 65 20 opelxpd N 3 1 1 0 1 × 0 ..^ N
67 prelpwi 0 1 0 1 × 0 ..^ N 1 1 0 1 × 0 ..^ N 0 1 1 1 𝒫 0 1 × 0 ..^ N
68 21 66 67 syl2anc N 3 0 1 1 1 𝒫 0 1 × 0 ..^ N
69 opeq2 x = 1 0 x = 0 1
70 oveq1 x = 1 x + 1 = 1 + 1
71 70 oveq1d x = 1 x + 1 mod N = 1 + 1 mod N
72 71 opeq2d x = 1 0 x + 1 mod N = 0 1 + 1 mod N
73 69 72 preq12d x = 1 0 x 0 x + 1 mod N = 0 1 0 1 + 1 mod N
74 73 eqeq2d x = 1 0 1 1 1 = 0 x 0 x + 1 mod N 0 1 1 1 = 0 1 0 1 + 1 mod N
75 opeq2 x = 1 1 x = 1 1
76 69 75 preq12d x = 1 0 x 1 x = 0 1 1 1
77 76 eqeq2d x = 1 0 1 1 1 = 0 x 1 x 0 1 1 1 = 0 1 1 1
78 71 opeq2d x = 1 1 x + 1 mod N = 1 1 + 1 mod N
79 75 78 preq12d x = 1 1 x 1 x + 1 mod N = 1 1 1 1 + 1 mod N
80 79 eqeq2d x = 1 0 1 1 1 = 1 x 1 x + 1 mod N 0 1 1 1 = 1 1 1 1 + 1 mod N
81 74 77 80 3orbi123d x = 1 0 1 1 1 = 0 x 0 x + 1 mod N 0 1 1 1 = 0 x 1 x 0 1 1 1 = 1 x 1 x + 1 mod N 0 1 1 1 = 0 1 0 1 + 1 mod N 0 1 1 1 = 0 1 1 1 0 1 1 1 = 1 1 1 1 + 1 mod N
82 eqid 0 1 1 1 = 0 1 1 1
83 82 3mix2i 0 1 1 1 = 0 1 0 1 + 1 mod N 0 1 1 1 = 0 1 1 1 0 1 1 1 = 1 1 1 1 + 1 mod N
84 83 a1i N 3 0 1 1 1 = 0 1 0 1 + 1 mod N 0 1 1 1 = 0 1 1 1 0 1 1 1 = 1 1 1 1 + 1 mod N
85 81 20 84 rspcedvdw N 3 x 0 ..^ N 0 1 1 1 = 0 x 0 x + 1 mod N 0 1 1 1 = 0 x 1 x 0 1 1 1 = 1 x 1 x + 1 mod N
86 68 85 jca N 3 0 1 1 1 𝒫 0 1 × 0 ..^ N x 0 ..^ N 0 1 1 1 = 0 x 0 x + 1 mod N 0 1 1 1 = 0 x 1 x 0 1 1 1 = 1 x 1 x + 1 mod N
87 fveq2 X = 1 F X = F 1
88 1 fveq1i F 1 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 1
89 prex 0 1 1 1 V
90 s4fv1 0 1 1 1 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 1 = 0 1 1 1
91 89 90 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 1 = 0 1 1 1
92 88 91 eqtri F 1 = 0 1 1 1
93 87 92 eqtrdi X = 1 F X = 0 1 1 1
94 93 eleq1d X = 1 F X 𝒫 0 1 × 0 ..^ N 0 1 1 1 𝒫 0 1 × 0 ..^ N
95 93 eqeq1d X = 1 F X = 0 x 0 x + 1 mod N 0 1 1 1 = 0 x 0 x + 1 mod N
96 93 eqeq1d X = 1 F X = 0 x 1 x 0 1 1 1 = 0 x 1 x
97 93 eqeq1d X = 1 F X = 1 x 1 x + 1 mod N 0 1 1 1 = 1 x 1 x + 1 mod N
98 95 96 97 3orbi123d X = 1 F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 0 1 1 1 = 0 x 0 x + 1 mod N 0 1 1 1 = 0 x 1 x 0 1 1 1 = 1 x 1 x + 1 mod N
99 98 rexbidv X = 1 x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N x 0 ..^ N 0 1 1 1 = 0 x 0 x + 1 mod N 0 1 1 1 = 0 x 1 x 0 1 1 1 = 1 x 1 x + 1 mod N
100 94 99 anbi12d X = 1 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 0 1 1 1 𝒫 0 1 × 0 ..^ N x 0 ..^ N 0 1 1 1 = 0 x 0 x + 1 mod N 0 1 1 1 = 0 x 1 x 0 1 1 1 = 1 x 1 x + 1 mod N
101 86 100 imbitrrid X = 1 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
102 62 101 jaoi X = 0 X = 1 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
103 6 102 syl X 0 1 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
104 elpri X 2 3 X = 2 X = 3
105 65 12 opelxpd N 3 1 0 0 1 × 0 ..^ N
106 66 105 jca N 3 1 1 0 1 × 0 ..^ N 1 0 0 1 × 0 ..^ N
107 106 adantr N 3 X = 2 1 1 0 1 × 0 ..^ N 1 0 0 1 × 0 ..^ N
108 prelpwi 1 1 0 1 × 0 ..^ N 1 0 0 1 × 0 ..^ N 1 1 1 0 𝒫 0 1 × 0 ..^ N
109 107 108 syl N 3 X = 2 1 1 1 0 𝒫 0 1 × 0 ..^ N
110 28 eqeq2d x = 0 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 0 0 0 + 1 mod N
111 31 eqeq2d x = 0 1 1 1 0 = 0 x 1 x 1 1 1 0 = 0 0 1 0
112 34 eqeq2d x = 0 1 1 1 0 = 1 x 1 x + 1 mod N 1 1 1 0 = 1 0 1 0 + 1 mod N
113 110 111 112 3orbi123d x = 0 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N 1 1 1 0 = 0 0 0 0 + 1 mod N 1 1 1 0 = 0 0 1 0 1 1 1 0 = 1 0 1 0 + 1 mod N
114 prcom 1 1 1 0 = 1 0 1 1
115 42 opeq2d N 3 1 1 = 1 0 + 1 mod N
116 115 preq2d N 3 1 0 1 1 = 1 0 1 0 + 1 mod N
117 114 116 eqtrid N 3 1 1 1 0 = 1 0 1 0 + 1 mod N
118 117 3mix3d N 3 1 1 1 0 = 0 0 0 0 + 1 mod N 1 1 1 0 = 0 0 1 0 1 1 1 0 = 1 0 1 0 + 1 mod N
119 113 12 118 rspcedvdw N 3 x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
120 119 adantr N 3 X = 2 x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
121 109 120 jca N 3 X = 2 1 1 1 0 𝒫 0 1 × 0 ..^ N x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
122 fveq2 X = 2 F X = F 2
123 1 fveq1i F 2 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 2
124 prex 1 1 1 0 V
125 s4fv2 1 1 1 0 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 2 = 1 1 1 0
126 124 125 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 2 = 1 1 1 0
127 123 126 eqtri F 2 = 1 1 1 0
128 122 127 eqtrdi X = 2 F X = 1 1 1 0
129 128 eleq1d X = 2 F X 𝒫 0 1 × 0 ..^ N 1 1 1 0 𝒫 0 1 × 0 ..^ N
130 128 eqeq1d X = 2 F X = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 0 x + 1 mod N
131 128 eqeq1d X = 2 F X = 0 x 1 x 1 1 1 0 = 0 x 1 x
132 128 eqeq1d X = 2 F X = 1 x 1 x + 1 mod N 1 1 1 0 = 1 x 1 x + 1 mod N
133 130 131 132 3orbi123d X = 2 F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
134 133 rexbidv X = 2 x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
135 129 134 anbi12d X = 2 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 1 1 1 0 𝒫 0 1 × 0 ..^ N x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
136 135 adantl N 3 X = 2 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 1 1 1 0 𝒫 0 1 × 0 ..^ N x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
137 121 136 mpbird N 3 X = 2 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
138 137 expcom X = 2 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
139 prelpwi 1 0 0 1 × 0 ..^ N 0 0 0 1 × 0 ..^ N 1 0 0 0 𝒫 0 1 × 0 ..^ N
140 105 13 139 syl2anc N 3 1 0 0 0 𝒫 0 1 × 0 ..^ N
141 28 eqeq2d x = 0 1 0 0 0 = 0 x 0 x + 1 mod N 1 0 0 0 = 0 0 0 0 + 1 mod N
142 31 eqeq2d x = 0 1 0 0 0 = 0 x 1 x 1 0 0 0 = 0 0 1 0
143 34 eqeq2d x = 0 1 0 0 0 = 1 x 1 x + 1 mod N 1 0 0 0 = 1 0 1 0 + 1 mod N
144 141 142 143 3orbi123d x = 0 1 0 0 0 = 0 x 0 x + 1 mod N 1 0 0 0 = 0 x 1 x 1 0 0 0 = 1 x 1 x + 1 mod N 1 0 0 0 = 0 0 0 0 + 1 mod N 1 0 0 0 = 0 0 1 0 1 0 0 0 = 1 0 1 0 + 1 mod N
145 prcom 1 0 0 0 = 0 0 1 0
146 145 3mix2i 1 0 0 0 = 0 0 0 0 + 1 mod N 1 0 0 0 = 0 0 1 0 1 0 0 0 = 1 0 1 0 + 1 mod N
147 146 a1i N 3 1 0 0 0 = 0 0 0 0 + 1 mod N 1 0 0 0 = 0 0 1 0 1 0 0 0 = 1 0 1 0 + 1 mod N
148 144 12 147 rspcedvdw N 3 x 0 ..^ N 1 0 0 0 = 0 x 0 x + 1 mod N 1 0 0 0 = 0 x 1 x 1 0 0 0 = 1 x 1 x + 1 mod N
149 140 148 jca N 3 1 0 0 0 𝒫 0 1 × 0 ..^ N x 0 ..^ N 1 0 0 0 = 0 x 0 x + 1 mod N 1 0 0 0 = 0 x 1 x 1 0 0 0 = 1 x 1 x + 1 mod N
150 fveq2 X = 3 F X = F 3
151 1 fveq1i F 3 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 3
152 prex 1 0 0 0 V
153 s4fv3 1 0 0 0 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 3 = 1 0 0 0
154 152 153 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 3 = 1 0 0 0
155 151 154 eqtri F 3 = 1 0 0 0
156 150 155 eqtrdi X = 3 F X = 1 0 0 0
157 156 eleq1d X = 3 F X 𝒫 0 1 × 0 ..^ N 1 0 0 0 𝒫 0 1 × 0 ..^ N
158 156 eqeq1d X = 3 F X = 0 x 0 x + 1 mod N 1 0 0 0 = 0 x 0 x + 1 mod N
159 156 eqeq1d X = 3 F X = 0 x 1 x 1 0 0 0 = 0 x 1 x
160 156 eqeq1d X = 3 F X = 1 x 1 x + 1 mod N 1 0 0 0 = 1 x 1 x + 1 mod N
161 158 159 160 3orbi123d X = 3 F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 1 0 0 0 = 0 x 0 x + 1 mod N 1 0 0 0 = 0 x 1 x 1 0 0 0 = 1 x 1 x + 1 mod N
162 161 rexbidv X = 3 x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N x 0 ..^ N 1 0 0 0 = 0 x 0 x + 1 mod N 1 0 0 0 = 0 x 1 x 1 0 0 0 = 1 x 1 x + 1 mod N
163 157 162 anbi12d X = 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N 1 0 0 0 𝒫 0 1 × 0 ..^ N x 0 ..^ N 1 0 0 0 = 0 x 0 x + 1 mod N 1 0 0 0 = 0 x 1 x 1 0 0 0 = 1 x 1 x + 1 mod N
164 149 163 imbitrrid X = 3 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
165 138 164 jaoi X = 2 X = 3 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
166 104 165 syl X 2 3 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
167 103 166 jaoi X 0 1 X 2 3 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
168 5 167 sylbi X 0 ..^ 4 N 3 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
169 168 impcom N 3 X 0 ..^ 4 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N