Metamath Proof Explorer


Theorem fzo0to42pr

Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017)

Ref Expression
Assertion fzo0to42pr 0..^4=0123

Proof

Step Hyp Ref Expression
1 2nn0 20
2 4nn0 40
3 2re 2
4 4re 4
5 2lt4 2<4
6 3 4 5 ltleii 24
7 elfz2nn0 204204024
8 1 2 6 7 mpbir3an 204
9 fzosplit 2040..^4=0..^22..^4
10 8 9 ax-mp 0..^4=0..^22..^4
11 fzo0to2pr 0..^2=01
12 4z 4
13 fzoval 42..^4=241
14 12 13 ax-mp 2..^4=241
15 4m1e3 41=3
16 df-3 3=2+1
17 15 16 eqtri 41=2+1
18 17 oveq2i 241=22+1
19 2z 2
20 fzpr 222+1=22+1
21 19 20 ax-mp 22+1=22+1
22 18 21 eqtri 241=22+1
23 2p1e3 2+1=3
24 23 preq2i 22+1=23
25 14 22 24 3eqtri 2..^4=23
26 11 25 uneq12i 0..^22..^4=0123
27 10 26 eqtri 0..^4=0123