Metamath Proof Explorer


Theorem gpgprismgr4cycllem3

Description: Lemma 3 for gpgprismgr4cycl0 . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycllem1.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
Assertion gpgprismgr4cycllem3 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ 4 ) ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycllem1.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
2 fzo0to42pr ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } )
3 2 eleq2i ( 𝑋 ∈ ( 0 ..^ 4 ) ↔ 𝑋 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) )
4 elun ( 𝑋 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ↔ ( 𝑋 ∈ { 0 , 1 } ∨ 𝑋 ∈ { 2 , 3 } ) )
5 3 4 bitri ( 𝑋 ∈ ( 0 ..^ 4 ) ↔ ( 𝑋 ∈ { 0 , 1 } ∨ 𝑋 ∈ { 2 , 3 } ) )
6 elpri ( 𝑋 ∈ { 0 , 1 } → ( 𝑋 = 0 ∨ 𝑋 = 1 ) )
7 c0ex 0 ∈ V
8 7 prid1 0 ∈ { 0 , 1 }
9 8 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 0 ∈ { 0 , 1 } )
10 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
11 lbfzo0 ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ )
12 10 11 sylibr ( 𝑁 ∈ ( ℤ ‘ 3 ) → 0 ∈ ( 0 ..^ 𝑁 ) )
13 9 12 opelxpd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 0 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
14 1nn0 1 ∈ ℕ0
15 14 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ℕ0 )
16 uzuzle23 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
17 eluz2gt1 ( 𝑁 ∈ ( ℤ ‘ 2 ) → 1 < 𝑁 )
18 16 17 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 < 𝑁 )
19 elfzo0 ( 1 ∈ ( 0 ..^ 𝑁 ) ↔ ( 1 ∈ ℕ0𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )
20 15 10 18 19 syl3anbrc ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 0 ..^ 𝑁 ) )
21 9 20 opelxpd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 0 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
22 prelpwi ( ( ⟨ 0 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ⟨ 0 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
23 13 21 22 syl2anc ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
24 opeq2 ( 𝑥 = 0 → ⟨ 0 , 𝑥 ⟩ = ⟨ 0 , 0 ⟩ )
25 oveq1 ( 𝑥 = 0 → ( 𝑥 + 1 ) = ( 0 + 1 ) )
26 25 oveq1d ( 𝑥 = 0 → ( ( 𝑥 + 1 ) mod 𝑁 ) = ( ( 0 + 1 ) mod 𝑁 ) )
27 26 opeq2d ( 𝑥 = 0 → ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ )
28 24 27 preq12d ( 𝑥 = 0 → { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } )
29 28 eqeq2d ( 𝑥 = 0 → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
30 opeq2 ( 𝑥 = 0 → ⟨ 1 , 𝑥 ⟩ = ⟨ 1 , 0 ⟩ )
31 24 30 preq12d ( 𝑥 = 0 → { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } )
32 31 eqeq2d ( 𝑥 = 0 → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ) )
33 26 opeq2d ( 𝑥 = 0 → ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ )
34 30 33 preq12d ( 𝑥 = 0 → { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } )
35 34 eqeq2d ( 𝑥 = 0 → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
36 29 32 35 3orbi123d ( 𝑥 = 0 → ( ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) ) )
37 eluzelre ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℝ )
38 1mod ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 )
39 37 18 38 syl2anc ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 1 mod 𝑁 ) = 1 )
40 1e0p1 1 = ( 0 + 1 )
41 40 oveq1i ( 1 mod 𝑁 ) = ( ( 0 + 1 ) mod 𝑁 )
42 39 41 eqtr3di ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 = ( ( 0 + 1 ) mod 𝑁 ) )
43 42 opeq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 0 , 1 ⟩ = ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ )
44 43 preq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } )
45 44 3mix1d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
46 36 12 45 rspcedvdw ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
47 23 46 jca ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
48 fveq2 ( 𝑋 = 0 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 0 ) )
49 1 fveq1i ( 𝐹 ‘ 0 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 0 )
50 prex { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ V
51 s4fv0 ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 0 ) = { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } )
52 50 51 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 0 ) = { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ }
53 49 52 eqtri ( 𝐹 ‘ 0 ) = { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ }
54 48 53 eqtrdi ( 𝑋 = 0 → ( 𝐹𝑋 ) = { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } )
55 54 eleq1d ( 𝑋 = 0 → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) )
56 54 eqeq1d ( 𝑋 = 0 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
57 54 eqeq1d ( 𝑋 = 0 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ) )
58 54 eqeq1d ( 𝑋 = 0 → ( ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
59 56 57 58 3orbi123d ( 𝑋 = 0 → ( ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
60 59 rexbidv ( 𝑋 = 0 → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
61 55 60 anbi12d ( 𝑋 = 0 → ( ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ↔ ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
62 47 61 imbitrrid ( 𝑋 = 0 → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
63 1ex 1 ∈ V
64 63 prid2 1 ∈ { 0 , 1 }
65 64 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ { 0 , 1 } )
66 65 20 opelxpd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 1 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
67 prelpwi ( ( ⟨ 0 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ⟨ 1 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
68 21 66 67 syl2anc ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
69 opeq2 ( 𝑥 = 1 → ⟨ 0 , 𝑥 ⟩ = ⟨ 0 , 1 ⟩ )
70 oveq1 ( 𝑥 = 1 → ( 𝑥 + 1 ) = ( 1 + 1 ) )
71 70 oveq1d ( 𝑥 = 1 → ( ( 𝑥 + 1 ) mod 𝑁 ) = ( ( 1 + 1 ) mod 𝑁 ) )
72 71 opeq2d ( 𝑥 = 1 → ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ )
73 69 72 preq12d ( 𝑥 = 1 → { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 0 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } )
74 73 eqeq2d ( 𝑥 = 1 → ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 0 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } ) )
75 opeq2 ( 𝑥 = 1 → ⟨ 1 , 𝑥 ⟩ = ⟨ 1 , 1 ⟩ )
76 69 75 preq12d ( 𝑥 = 1 → { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } )
77 76 eqeq2d ( 𝑥 = 1 → ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ) )
78 71 opeq2d ( 𝑥 = 1 → ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ )
79 75 78 preq12d ( 𝑥 = 1 → { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 1 ⟩ , ⟨ 1 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } )
80 79 eqeq2d ( 𝑥 = 1 → ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 1 ⟩ , ⟨ 1 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } ) )
81 74 77 80 3orbi123d ( 𝑥 = 1 → ( ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 0 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 1 ⟩ , ⟨ 1 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } ) ) )
82 eqid { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ }
83 82 3mix2i ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 0 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 1 ⟩ , ⟨ 1 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } )
84 83 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 0 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 1 ⟩ , ⟨ 1 , ( ( 1 + 1 ) mod 𝑁 ) ⟩ } ) )
85 81 20 84 rspcedvdw ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
86 68 85 jca ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
87 fveq2 ( 𝑋 = 1 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 1 ) )
88 1 fveq1i ( 𝐹 ‘ 1 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 1 )
89 prex { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ V
90 s4fv1 ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 1 ) = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } )
91 89 90 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 1 ) = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ }
92 88 91 eqtri ( 𝐹 ‘ 1 ) = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ }
93 87 92 eqtrdi ( 𝑋 = 1 → ( 𝐹𝑋 ) = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } )
94 93 eleq1d ( 𝑋 = 1 → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) )
95 93 eqeq1d ( 𝑋 = 1 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
96 93 eqeq1d ( 𝑋 = 1 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ) )
97 93 eqeq1d ( 𝑋 = 1 → ( ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
98 95 96 97 3orbi123d ( 𝑋 = 1 → ( ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
99 98 rexbidv ( 𝑋 = 1 → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
100 94 99 anbi12d ( 𝑋 = 1 → ( ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ↔ ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
101 86 100 imbitrrid ( 𝑋 = 1 → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
102 62 101 jaoi ( ( 𝑋 = 0 ∨ 𝑋 = 1 ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
103 6 102 syl ( 𝑋 ∈ { 0 , 1 } → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
104 elpri ( 𝑋 ∈ { 2 , 3 } → ( 𝑋 = 2 ∨ 𝑋 = 3 ) )
105 65 12 opelxpd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 1 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
106 66 105 jca ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ⟨ 1 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ⟨ 1 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) )
107 106 adantr ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 = 2 ) → ( ⟨ 1 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ⟨ 1 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) )
108 prelpwi ( ( ⟨ 1 , 1 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ⟨ 1 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
109 107 108 syl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 = 2 ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
110 28 eqeq2d ( 𝑥 = 0 → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
111 31 eqeq2d ( 𝑥 = 0 → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ) )
112 34 eqeq2d ( 𝑥 = 0 → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
113 110 111 112 3orbi123d ( 𝑥 = 0 → ( ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) ) )
114 prcom { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , 1 ⟩ }
115 42 opeq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 1 , 1 ⟩ = ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ )
116 115 preq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 0 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } )
117 114 116 eqtrid ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } )
118 117 3mix3d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
119 113 12 118 rspcedvdw ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
120 119 adantr ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 = 2 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
121 109 120 jca ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 = 2 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
122 fveq2 ( 𝑋 = 2 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 2 ) )
123 1 fveq1i ( 𝐹 ‘ 2 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 2 )
124 prex { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ V
125 s4fv2 ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 2 ) = { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } )
126 124 125 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 2 ) = { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ }
127 123 126 eqtri ( 𝐹 ‘ 2 ) = { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ }
128 122 127 eqtrdi ( 𝑋 = 2 → ( 𝐹𝑋 ) = { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } )
129 128 eleq1d ( 𝑋 = 2 → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) )
130 128 eqeq1d ( 𝑋 = 2 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
131 128 eqeq1d ( 𝑋 = 2 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ) )
132 128 eqeq1d ( 𝑋 = 2 → ( ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
133 130 131 132 3orbi123d ( 𝑋 = 2 → ( ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
134 133 rexbidv ( 𝑋 = 2 → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
135 129 134 anbi12d ( 𝑋 = 2 → ( ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ↔ ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
136 135 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 = 2 ) → ( ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ↔ ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
137 121 136 mpbird ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 = 2 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
138 137 expcom ( 𝑋 = 2 → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
139 prelpwi ( ( ⟨ 1 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ⟨ 0 , 0 ⟩ ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
140 105 13 139 syl2anc ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) )
141 28 eqeq2d ( 𝑥 = 0 → ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
142 31 eqeq2d ( 𝑥 = 0 → ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ) )
143 34 eqeq2d ( 𝑥 = 0 → ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
144 141 142 143 3orbi123d ( 𝑥 = 0 → ( ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) ) )
145 prcom { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
146 145 3mix2i ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } )
147 146 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( ( 0 + 1 ) mod 𝑁 ) ⟩ } ) )
148 144 12 147 rspcedvdw ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
149 140 148 jca ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
150 fveq2 ( 𝑋 = 3 → ( 𝐹𝑋 ) = ( 𝐹 ‘ 3 ) )
151 1 fveq1i ( 𝐹 ‘ 3 ) = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 3 )
152 prex { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ V
153 s4fv3 ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ V → ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 3 ) = { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } )
154 152 153 ax-mp ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ ‘ 3 ) = { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ }
155 151 154 eqtri ( 𝐹 ‘ 3 ) = { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ }
156 150 155 eqtrdi ( 𝑋 = 3 → ( 𝐹𝑋 ) = { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } )
157 156 eleq1d ( 𝑋 = 3 → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ↔ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) )
158 156 eqeq1d ( 𝑋 = 3 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
159 156 eqeq1d ( 𝑋 = 3 → ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ) )
160 156 eqeq1d ( 𝑋 = 3 → ( ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
161 158 159 160 3orbi123d ( 𝑋 = 3 → ( ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
162 161 rexbidv ( 𝑋 = 3 → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
163 157 162 anbi12d ( 𝑋 = 3 → ( ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ↔ ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
164 149 163 imbitrrid ( 𝑋 = 3 → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
165 138 164 jaoi ( ( 𝑋 = 2 ∨ 𝑋 = 3 ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
166 104 165 syl ( 𝑋 ∈ { 2 , 3 } → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
167 103 166 jaoi ( ( 𝑋 ∈ { 0 , 1 } ∨ 𝑋 ∈ { 2 , 3 } ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
168 5 167 sylbi ( 𝑋 ∈ ( 0 ..^ 4 ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) ) )
169 168 impcom ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑋 ∈ ( 0 ..^ 4 ) ) → ( ( 𝐹𝑋 ) ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ( 𝐹𝑋 ) = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )