Metamath Proof Explorer


Theorem gpgprismgr4cycllem1

Description: Lemma 1 for gpgprismgr4cycl0 : the cycle <. P , F >. consists of 4 edges (i.e., has length 4). (Contributed by AV, 1-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycllem1.f
|- F = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } ">
Assertion gpgprismgr4cycllem1
|- ( # ` F ) = 4

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycllem1.f
 |-  F = <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } ">
2 1 fveq2i
 |-  ( # ` F ) = ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> )
3 s4len
 |-  ( # ` <" { <. 0 , 0 >. , <. 0 , 1 >. } { <. 0 , 1 >. , <. 1 , 1 >. } { <. 1 , 1 >. , <. 1 , 0 >. } { <. 1 , 0 >. , <. 0 , 0 >. } "> ) = 4
4 2 3 eqtri
 |-  ( # ` F ) = 4