| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgprismgr4cycl.p |
⊢ 𝑃 = 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 |
| 2 |
|
gpgprismgr4cycl.f |
⊢ 𝐹 = 〈“ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } { 〈 0 , 1 〉 , 〈 1 , 1 〉 } { 〈 1 , 1 〉 , 〈 1 , 0 〉 } { 〈 1 , 0 〉 , 〈 0 , 0 〉 } ”〉 |
| 3 |
|
gpgprismgr4cycl.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 1 ) |
| 4 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 5 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) |
| 6 |
4 5
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ℕ0 ) |
| 9 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 10 |
|
uzuzle23 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 11 |
|
eluz2gt1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑁 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 < 𝑁 ) |
| 13 |
|
elfzo0z |
⊢ ( 1 ∈ ( 0 ..^ 𝑁 ) ↔ ( 1 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) |
| 14 |
8 9 12 13
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 0 ..^ 𝑁 ) ) |
| 15 |
|
c0ex |
⊢ 0 ∈ V |
| 16 |
15
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 17 |
16
|
a1i |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 0 ∈ { 0 , 1 } ) |
| 18 |
|
simpl |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 19 |
17 18
|
opelxpd |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 〈 0 , 0 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 20 |
|
simpr |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 1 ∈ ( 0 ..^ 𝑁 ) ) |
| 21 |
17 20
|
opelxpd |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 〈 0 , 1 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 22 |
|
1ex |
⊢ 1 ∈ V |
| 23 |
22
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
| 24 |
23
|
a1i |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 1 ∈ { 0 , 1 } ) |
| 25 |
24 20
|
opelxpd |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 〈 1 , 1 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 26 |
24 18
|
opelxpd |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 〈 1 , 0 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 27 |
19 21 25 26 19
|
s5cld |
⊢ ( ( 0 ∈ ( 0 ..^ 𝑁 ) ∧ 1 ∈ ( 0 ..^ 𝑁 ) ) → 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∈ Word ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 28 |
6 14 27
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∈ Word ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 29 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑁 gPetersenGr 1 ) ) |
| 30 |
|
1elfzo1ceilhalf1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 31 |
|
eqid |
⊢ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 32 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
| 33 |
31 32
|
gpgvtx |
⊢ ( ( 𝑁 ∈ ℕ ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( Vtx ‘ ( 𝑁 gPetersenGr 1 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 34 |
4 30 33
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 1 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 35 |
29 34
|
eqtrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( Vtx ‘ 𝐺 ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 36 |
|
wrdeq |
⊢ ( ( Vtx ‘ 𝐺 ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → Word ( Vtx ‘ 𝐺 ) = Word ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → Word ( Vtx ‘ 𝐺 ) = Word ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 38 |
28 37
|
eleqtrrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 〈“ 〈 0 , 0 〉 〈 0 , 1 〉 〈 1 , 1 〉 〈 1 , 0 〉 〈 0 , 0 〉 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 39 |
1 38
|
eqeltrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 40 |
|
wrdf |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 41 |
39 40
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 42 |
|
4z |
⊢ 4 ∈ ℤ |
| 43 |
|
fzval3 |
⊢ ( 4 ∈ ℤ → ( 0 ... 4 ) = ( 0 ..^ ( 4 + 1 ) ) ) |
| 44 |
42 43
|
ax-mp |
⊢ ( 0 ... 4 ) = ( 0 ..^ ( 4 + 1 ) ) |
| 45 |
2
|
gpgprismgr4cycllem1 |
⊢ ( ♯ ‘ 𝐹 ) = 4 |
| 46 |
45
|
oveq2i |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 4 ) |
| 47 |
1
|
gpgprismgr4cycllem4 |
⊢ ( ♯ ‘ 𝑃 ) = 5 |
| 48 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
| 49 |
47 48
|
eqtri |
⊢ ( ♯ ‘ 𝑃 ) = ( 4 + 1 ) |
| 50 |
49
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ..^ ( 4 + 1 ) ) |
| 51 |
44 46 50
|
3eqtr4i |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ♯ ‘ 𝑃 ) ) |
| 52 |
51
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
| 53 |
52
|
feq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 54 |
41 53
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |