Metamath Proof Explorer


Theorem gpgprismgr4cycllem9

Description: Lemma 9 for gpgprismgr4cycl0 . (Contributed by AV, 3-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
gpgprismgr4cycl.g No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
Assertion gpgprismgr4cycllem9 N 3 P : 0 F Vtx G

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
2 gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
3 gpgprismgr4cycl.g Could not format G = ( N gPetersenGr 1 ) : No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
4 eluzge3nn N 3 N
5 lbfzo0 0 0 ..^ N N
6 4 5 sylibr N 3 0 0 ..^ N
7 1nn0 1 0
8 7 a1i N 3 1 0
9 eluzelz N 3 N
10 uzuzle23 N 3 N 2
11 eluz2gt1 N 2 1 < N
12 10 11 syl N 3 1 < N
13 elfzo0z 1 0 ..^ N 1 0 N 1 < N
14 8 9 12 13 syl3anbrc N 3 1 0 ..^ N
15 c0ex 0 V
16 15 prid1 0 0 1
17 16 a1i 0 0 ..^ N 1 0 ..^ N 0 0 1
18 simpl 0 0 ..^ N 1 0 ..^ N 0 0 ..^ N
19 17 18 opelxpd 0 0 ..^ N 1 0 ..^ N 0 0 0 1 × 0 ..^ N
20 simpr 0 0 ..^ N 1 0 ..^ N 1 0 ..^ N
21 17 20 opelxpd 0 0 ..^ N 1 0 ..^ N 0 1 0 1 × 0 ..^ N
22 1ex 1 V
23 22 prid2 1 0 1
24 23 a1i 0 0 ..^ N 1 0 ..^ N 1 0 1
25 24 20 opelxpd 0 0 ..^ N 1 0 ..^ N 1 1 0 1 × 0 ..^ N
26 24 18 opelxpd 0 0 ..^ N 1 0 ..^ N 1 0 0 1 × 0 ..^ N
27 19 21 25 26 19 s5cld 0 0 ..^ N 1 0 ..^ N ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ Word 0 1 × 0 ..^ N
28 6 14 27 syl2anc N 3 ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ Word 0 1 × 0 ..^ N
29 3 fveq2i Could not format ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr 1 ) ) : No typesetting found for |- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr 1 ) ) with typecode |-
30 1elfzo1ceilhalf1 N 3 1 1 ..^ N 2
31 eqid 1 ..^ N 2 = 1 ..^ N 2
32 eqid 0 ..^ N = 0 ..^ N
33 31 32 gpgvtx Could not format ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
34 4 30 33 syl2anc Could not format ( N e. ( ZZ>= ` 3 ) -> ( Vtx ` ( N gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( Vtx ` ( N gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
35 29 34 eqtrid N 3 Vtx G = 0 1 × 0 ..^ N
36 wrdeq Vtx G = 0 1 × 0 ..^ N Word Vtx G = Word 0 1 × 0 ..^ N
37 35 36 syl N 3 Word Vtx G = Word 0 1 × 0 ..^ N
38 28 37 eleqtrrd N 3 ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ Word Vtx G
39 1 38 eqeltrid N 3 P Word Vtx G
40 wrdf P Word Vtx G P : 0 ..^ P Vtx G
41 39 40 syl N 3 P : 0 ..^ P Vtx G
42 4z 4
43 fzval3 4 0 4 = 0 ..^ 4 + 1
44 42 43 ax-mp 0 4 = 0 ..^ 4 + 1
45 2 gpgprismgr4cycllem1 F = 4
46 45 oveq2i 0 F = 0 4
47 1 gpgprismgr4cycllem4 P = 5
48 df-5 5 = 4 + 1
49 47 48 eqtri P = 4 + 1
50 49 oveq2i 0 ..^ P = 0 ..^ 4 + 1
51 44 46 50 3eqtr4i 0 F = 0 ..^ P
52 51 a1i N 3 0 F = 0 ..^ P
53 52 feq2d N 3 P : 0 F Vtx G P : 0 ..^ P Vtx G
54 41 53 mpbird N 3 P : 0 F Vtx G