| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgprismgr4cycl.p |
|- P = <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> |
| 2 |
1
|
gpgprismgr4cycllem4 |
|- ( # ` P ) = 5 |
| 3 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 4 |
2 3
|
eqtri |
|- ( # ` P ) = ( 4 + 1 ) |
| 5 |
4
|
oveq2i |
|- ( 0 ..^ ( # ` P ) ) = ( 0 ..^ ( 4 + 1 ) ) |
| 6 |
|
4nn0 |
|- 4 e. NN0 |
| 7 |
|
elnn0uz |
|- ( 4 e. NN0 <-> 4 e. ( ZZ>= ` 0 ) ) |
| 8 |
6 7
|
mpbi |
|- 4 e. ( ZZ>= ` 0 ) |
| 9 |
|
fzosplitsn |
|- ( 4 e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( 4 + 1 ) ) = ( ( 0 ..^ 4 ) u. { 4 } ) ) |
| 10 |
8 9
|
ax-mp |
|- ( 0 ..^ ( 4 + 1 ) ) = ( ( 0 ..^ 4 ) u. { 4 } ) |
| 11 |
|
fzo0to42pr |
|- ( 0 ..^ 4 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 12 |
11
|
uneq1i |
|- ( ( 0 ..^ 4 ) u. { 4 } ) = ( ( { 0 , 1 } u. { 2 , 3 } ) u. { 4 } ) |
| 13 |
5 10 12
|
3eqtri |
|- ( 0 ..^ ( # ` P ) ) = ( ( { 0 , 1 } u. { 2 , 3 } ) u. { 4 } ) |
| 14 |
13
|
eleq2i |
|- ( X e. ( 0 ..^ ( # ` P ) ) <-> X e. ( ( { 0 , 1 } u. { 2 , 3 } ) u. { 4 } ) ) |
| 15 |
|
fzo1to4tp |
|- ( 1 ..^ 4 ) = { 1 , 2 , 3 } |
| 16 |
15
|
eleq2i |
|- ( Y e. ( 1 ..^ 4 ) <-> Y e. { 1 , 2 , 3 } ) |
| 17 |
|
elun |
|- ( X e. ( ( { 0 , 1 } u. { 2 , 3 } ) u. { 4 } ) <-> ( X e. ( { 0 , 1 } u. { 2 , 3 } ) \/ X e. { 4 } ) ) |
| 18 |
|
elun |
|- ( X e. ( { 0 , 1 } u. { 2 , 3 } ) <-> ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) ) |
| 19 |
18
|
orbi1i |
|- ( ( X e. ( { 0 , 1 } u. { 2 , 3 } ) \/ X e. { 4 } ) <-> ( ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) \/ X e. { 4 } ) ) |
| 20 |
17 19
|
bitri |
|- ( X e. ( ( { 0 , 1 } u. { 2 , 3 } ) u. { 4 } ) <-> ( ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) \/ X e. { 4 } ) ) |
| 21 |
|
elpri |
|- ( X e. { 0 , 1 } -> ( X = 0 \/ X = 1 ) ) |
| 22 |
|
0ne1 |
|- 0 =/= 1 |
| 23 |
22
|
olci |
|- ( 0 =/= 0 \/ 0 =/= 1 ) |
| 24 |
|
c0ex |
|- 0 e. _V |
| 25 |
24 24
|
opthne |
|- ( <. 0 , 0 >. =/= <. 0 , 1 >. <-> ( 0 =/= 0 \/ 0 =/= 1 ) ) |
| 26 |
23 25
|
mpbir |
|- <. 0 , 0 >. =/= <. 0 , 1 >. |
| 27 |
1
|
fveq1i |
|- ( P ` 0 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 0 ) |
| 28 |
|
opex |
|- <. 0 , 0 >. e. _V |
| 29 |
|
df-s5 |
|- <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ++ <" <. 0 , 0 >. "> ) |
| 30 |
|
s4cli |
|- <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> e. Word _V |
| 31 |
|
s4len |
|- ( # ` <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ) = 4 |
| 32 |
|
s4fv0 |
|- ( <. 0 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 0 ) = <. 0 , 0 >. ) |
| 33 |
|
0nn0 |
|- 0 e. NN0 |
| 34 |
|
4pos |
|- 0 < 4 |
| 35 |
29 30 31 32 33 34
|
cats1fv |
|- ( <. 0 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 0 ) = <. 0 , 0 >. ) |
| 36 |
28 35
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 0 ) = <. 0 , 0 >. |
| 37 |
27 36
|
eqtri |
|- ( P ` 0 ) = <. 0 , 0 >. |
| 38 |
1
|
fveq1i |
|- ( P ` 1 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 1 ) |
| 39 |
|
opex |
|- <. 0 , 1 >. e. _V |
| 40 |
|
s4fv1 |
|- ( <. 0 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 1 ) = <. 0 , 1 >. ) |
| 41 |
|
1nn0 |
|- 1 e. NN0 |
| 42 |
|
1lt4 |
|- 1 < 4 |
| 43 |
29 30 31 40 41 42
|
cats1fv |
|- ( <. 0 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 1 ) = <. 0 , 1 >. ) |
| 44 |
39 43
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 1 ) = <. 0 , 1 >. |
| 45 |
38 44
|
eqtri |
|- ( P ` 1 ) = <. 0 , 1 >. |
| 46 |
37 45
|
neeq12i |
|- ( ( P ` 0 ) =/= ( P ` 1 ) <-> <. 0 , 0 >. =/= <. 0 , 1 >. ) |
| 47 |
26 46
|
mpbir |
|- ( P ` 0 ) =/= ( P ` 1 ) |
| 48 |
47
|
a1i |
|- ( ( Y = 1 /\ X = 0 ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 49 |
|
fveq2 |
|- ( X = 0 -> ( P ` X ) = ( P ` 0 ) ) |
| 50 |
49
|
adantl |
|- ( ( Y = 1 /\ X = 0 ) -> ( P ` X ) = ( P ` 0 ) ) |
| 51 |
|
fveq2 |
|- ( Y = 1 -> ( P ` Y ) = ( P ` 1 ) ) |
| 52 |
51
|
adantr |
|- ( ( Y = 1 /\ X = 0 ) -> ( P ` Y ) = ( P ` 1 ) ) |
| 53 |
48 50 52
|
3netr4d |
|- ( ( Y = 1 /\ X = 0 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 54 |
53
|
a1d |
|- ( ( Y = 1 /\ X = 0 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 55 |
54
|
ex |
|- ( Y = 1 -> ( X = 0 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 56 |
22
|
orci |
|- ( 0 =/= 1 \/ 0 =/= 1 ) |
| 57 |
24 24
|
opthne |
|- ( <. 0 , 0 >. =/= <. 1 , 1 >. <-> ( 0 =/= 1 \/ 0 =/= 1 ) ) |
| 58 |
56 57
|
mpbir |
|- <. 0 , 0 >. =/= <. 1 , 1 >. |
| 59 |
1
|
fveq1i |
|- ( P ` 2 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 2 ) |
| 60 |
|
opex |
|- <. 1 , 1 >. e. _V |
| 61 |
|
s4fv2 |
|- ( <. 1 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 2 ) = <. 1 , 1 >. ) |
| 62 |
|
2nn0 |
|- 2 e. NN0 |
| 63 |
|
2lt4 |
|- 2 < 4 |
| 64 |
29 30 31 61 62 63
|
cats1fv |
|- ( <. 1 , 1 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 2 ) = <. 1 , 1 >. ) |
| 65 |
60 64
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 2 ) = <. 1 , 1 >. |
| 66 |
59 65
|
eqtri |
|- ( P ` 2 ) = <. 1 , 1 >. |
| 67 |
37 66
|
neeq12i |
|- ( ( P ` 0 ) =/= ( P ` 2 ) <-> <. 0 , 0 >. =/= <. 1 , 1 >. ) |
| 68 |
58 67
|
mpbir |
|- ( P ` 0 ) =/= ( P ` 2 ) |
| 69 |
68
|
a1i |
|- ( ( Y = 2 /\ X = 0 ) -> ( P ` 0 ) =/= ( P ` 2 ) ) |
| 70 |
49
|
adantl |
|- ( ( Y = 2 /\ X = 0 ) -> ( P ` X ) = ( P ` 0 ) ) |
| 71 |
|
fveq2 |
|- ( Y = 2 -> ( P ` Y ) = ( P ` 2 ) ) |
| 72 |
71
|
adantr |
|- ( ( Y = 2 /\ X = 0 ) -> ( P ` Y ) = ( P ` 2 ) ) |
| 73 |
69 70 72
|
3netr4d |
|- ( ( Y = 2 /\ X = 0 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 74 |
73
|
a1d |
|- ( ( Y = 2 /\ X = 0 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 75 |
74
|
ex |
|- ( Y = 2 -> ( X = 0 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 76 |
22
|
orci |
|- ( 0 =/= 1 \/ 0 =/= 0 ) |
| 77 |
24 24
|
opthne |
|- ( <. 0 , 0 >. =/= <. 1 , 0 >. <-> ( 0 =/= 1 \/ 0 =/= 0 ) ) |
| 78 |
76 77
|
mpbir |
|- <. 0 , 0 >. =/= <. 1 , 0 >. |
| 79 |
1
|
fveq1i |
|- ( P ` 3 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 3 ) |
| 80 |
|
opex |
|- <. 1 , 0 >. e. _V |
| 81 |
|
s4fv3 |
|- ( <. 1 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. "> ` 3 ) = <. 1 , 0 >. ) |
| 82 |
|
3nn0 |
|- 3 e. NN0 |
| 83 |
|
3lt4 |
|- 3 < 4 |
| 84 |
29 30 31 81 82 83
|
cats1fv |
|- ( <. 1 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 3 ) = <. 1 , 0 >. ) |
| 85 |
80 84
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 3 ) = <. 1 , 0 >. |
| 86 |
79 85
|
eqtri |
|- ( P ` 3 ) = <. 1 , 0 >. |
| 87 |
37 86
|
neeq12i |
|- ( ( P ` 0 ) =/= ( P ` 3 ) <-> <. 0 , 0 >. =/= <. 1 , 0 >. ) |
| 88 |
78 87
|
mpbir |
|- ( P ` 0 ) =/= ( P ` 3 ) |
| 89 |
88
|
a1i |
|- ( ( Y = 3 /\ X = 0 ) -> ( P ` 0 ) =/= ( P ` 3 ) ) |
| 90 |
49
|
adantl |
|- ( ( Y = 3 /\ X = 0 ) -> ( P ` X ) = ( P ` 0 ) ) |
| 91 |
|
fveq2 |
|- ( Y = 3 -> ( P ` Y ) = ( P ` 3 ) ) |
| 92 |
91
|
adantr |
|- ( ( Y = 3 /\ X = 0 ) -> ( P ` Y ) = ( P ` 3 ) ) |
| 93 |
89 90 92
|
3netr4d |
|- ( ( Y = 3 /\ X = 0 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 94 |
93
|
a1d |
|- ( ( Y = 3 /\ X = 0 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 95 |
94
|
ex |
|- ( Y = 3 -> ( X = 0 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 96 |
55 75 95
|
3jaoi |
|- ( ( Y = 1 \/ Y = 2 \/ Y = 3 ) -> ( X = 0 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 97 |
|
eltpi |
|- ( Y e. { 1 , 2 , 3 } -> ( Y = 1 \/ Y = 2 \/ Y = 3 ) ) |
| 98 |
96 97
|
syl11 |
|- ( X = 0 -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 99 |
|
simpr |
|- ( ( Y = 1 /\ X = 1 ) -> X = 1 ) |
| 100 |
|
simpl |
|- ( ( Y = 1 /\ X = 1 ) -> Y = 1 ) |
| 101 |
99 100
|
neeq12d |
|- ( ( Y = 1 /\ X = 1 ) -> ( X =/= Y <-> 1 =/= 1 ) ) |
| 102 |
|
eqid |
|- 1 = 1 |
| 103 |
|
eqneqall |
|- ( 1 = 1 -> ( 1 =/= 1 -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 104 |
102 103
|
ax-mp |
|- ( 1 =/= 1 -> ( P ` X ) =/= ( P ` Y ) ) |
| 105 |
101 104
|
biimtrdi |
|- ( ( Y = 1 /\ X = 1 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 106 |
105
|
ex |
|- ( Y = 1 -> ( X = 1 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 107 |
22
|
orci |
|- ( 0 =/= 1 \/ 1 =/= 1 ) |
| 108 |
|
1ex |
|- 1 e. _V |
| 109 |
24 108
|
opthne |
|- ( <. 0 , 1 >. =/= <. 1 , 1 >. <-> ( 0 =/= 1 \/ 1 =/= 1 ) ) |
| 110 |
107 109
|
mpbir |
|- <. 0 , 1 >. =/= <. 1 , 1 >. |
| 111 |
45 66
|
neeq12i |
|- ( ( P ` 1 ) =/= ( P ` 2 ) <-> <. 0 , 1 >. =/= <. 1 , 1 >. ) |
| 112 |
110 111
|
mpbir |
|- ( P ` 1 ) =/= ( P ` 2 ) |
| 113 |
112
|
a1i |
|- ( ( Y = 2 /\ X = 1 ) -> ( P ` 1 ) =/= ( P ` 2 ) ) |
| 114 |
|
fveq2 |
|- ( X = 1 -> ( P ` X ) = ( P ` 1 ) ) |
| 115 |
114
|
adantl |
|- ( ( Y = 2 /\ X = 1 ) -> ( P ` X ) = ( P ` 1 ) ) |
| 116 |
71
|
adantr |
|- ( ( Y = 2 /\ X = 1 ) -> ( P ` Y ) = ( P ` 2 ) ) |
| 117 |
113 115 116
|
3netr4d |
|- ( ( Y = 2 /\ X = 1 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 118 |
117
|
a1d |
|- ( ( Y = 2 /\ X = 1 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 119 |
118
|
ex |
|- ( Y = 2 -> ( X = 1 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 120 |
22
|
orci |
|- ( 0 =/= 1 \/ 1 =/= 0 ) |
| 121 |
24 108
|
opthne |
|- ( <. 0 , 1 >. =/= <. 1 , 0 >. <-> ( 0 =/= 1 \/ 1 =/= 0 ) ) |
| 122 |
120 121
|
mpbir |
|- <. 0 , 1 >. =/= <. 1 , 0 >. |
| 123 |
45 86
|
neeq12i |
|- ( ( P ` 1 ) =/= ( P ` 3 ) <-> <. 0 , 1 >. =/= <. 1 , 0 >. ) |
| 124 |
122 123
|
mpbir |
|- ( P ` 1 ) =/= ( P ` 3 ) |
| 125 |
124
|
a1i |
|- ( ( Y = 3 /\ X = 1 ) -> ( P ` 1 ) =/= ( P ` 3 ) ) |
| 126 |
114
|
adantl |
|- ( ( Y = 3 /\ X = 1 ) -> ( P ` X ) = ( P ` 1 ) ) |
| 127 |
91
|
adantr |
|- ( ( Y = 3 /\ X = 1 ) -> ( P ` Y ) = ( P ` 3 ) ) |
| 128 |
125 126 127
|
3netr4d |
|- ( ( Y = 3 /\ X = 1 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 129 |
128
|
a1d |
|- ( ( Y = 3 /\ X = 1 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 130 |
129
|
ex |
|- ( Y = 3 -> ( X = 1 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 131 |
106 119 130
|
3jaoi |
|- ( ( Y = 1 \/ Y = 2 \/ Y = 3 ) -> ( X = 1 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 132 |
131 97
|
syl11 |
|- ( X = 1 -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 133 |
98 132
|
jaoi |
|- ( ( X = 0 \/ X = 1 ) -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 134 |
21 133
|
syl |
|- ( X e. { 0 , 1 } -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 135 |
|
elpri |
|- ( X e. { 2 , 3 } -> ( X = 2 \/ X = 3 ) ) |
| 136 |
112
|
necomi |
|- ( P ` 2 ) =/= ( P ` 1 ) |
| 137 |
136
|
a1i |
|- ( ( Y = 1 /\ X = 2 ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
| 138 |
|
fveq2 |
|- ( X = 2 -> ( P ` X ) = ( P ` 2 ) ) |
| 139 |
138
|
adantl |
|- ( ( Y = 1 /\ X = 2 ) -> ( P ` X ) = ( P ` 2 ) ) |
| 140 |
51
|
adantr |
|- ( ( Y = 1 /\ X = 2 ) -> ( P ` Y ) = ( P ` 1 ) ) |
| 141 |
137 139 140
|
3netr4d |
|- ( ( Y = 1 /\ X = 2 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 142 |
141
|
a1d |
|- ( ( Y = 1 /\ X = 2 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 143 |
142
|
ex |
|- ( Y = 1 -> ( X = 2 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 144 |
|
simpr |
|- ( ( Y = 2 /\ X = 2 ) -> X = 2 ) |
| 145 |
|
simpl |
|- ( ( Y = 2 /\ X = 2 ) -> Y = 2 ) |
| 146 |
144 145
|
neeq12d |
|- ( ( Y = 2 /\ X = 2 ) -> ( X =/= Y <-> 2 =/= 2 ) ) |
| 147 |
|
eqid |
|- 2 = 2 |
| 148 |
|
eqneqall |
|- ( 2 = 2 -> ( 2 =/= 2 -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 149 |
147 148
|
ax-mp |
|- ( 2 =/= 2 -> ( P ` X ) =/= ( P ` Y ) ) |
| 150 |
146 149
|
biimtrdi |
|- ( ( Y = 2 /\ X = 2 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 151 |
150
|
ex |
|- ( Y = 2 -> ( X = 2 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 152 |
22
|
necomi |
|- 1 =/= 0 |
| 153 |
152
|
olci |
|- ( 1 =/= 1 \/ 1 =/= 0 ) |
| 154 |
108 108
|
opthne |
|- ( <. 1 , 1 >. =/= <. 1 , 0 >. <-> ( 1 =/= 1 \/ 1 =/= 0 ) ) |
| 155 |
153 154
|
mpbir |
|- <. 1 , 1 >. =/= <. 1 , 0 >. |
| 156 |
66 86
|
neeq12i |
|- ( ( P ` 2 ) =/= ( P ` 3 ) <-> <. 1 , 1 >. =/= <. 1 , 0 >. ) |
| 157 |
155 156
|
mpbir |
|- ( P ` 2 ) =/= ( P ` 3 ) |
| 158 |
157
|
a1i |
|- ( ( Y = 3 /\ X = 2 ) -> ( P ` 2 ) =/= ( P ` 3 ) ) |
| 159 |
138
|
adantl |
|- ( ( Y = 3 /\ X = 2 ) -> ( P ` X ) = ( P ` 2 ) ) |
| 160 |
91
|
adantr |
|- ( ( Y = 3 /\ X = 2 ) -> ( P ` Y ) = ( P ` 3 ) ) |
| 161 |
158 159 160
|
3netr4d |
|- ( ( Y = 3 /\ X = 2 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 162 |
161
|
a1d |
|- ( ( Y = 3 /\ X = 2 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 163 |
162
|
ex |
|- ( Y = 3 -> ( X = 2 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 164 |
143 151 163
|
3jaoi |
|- ( ( Y = 1 \/ Y = 2 \/ Y = 3 ) -> ( X = 2 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 165 |
164 97
|
syl11 |
|- ( X = 2 -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 166 |
124
|
necomi |
|- ( P ` 3 ) =/= ( P ` 1 ) |
| 167 |
166
|
a1i |
|- ( ( Y = 1 /\ X = 3 ) -> ( P ` 3 ) =/= ( P ` 1 ) ) |
| 168 |
|
fveq2 |
|- ( X = 3 -> ( P ` X ) = ( P ` 3 ) ) |
| 169 |
168
|
adantl |
|- ( ( Y = 1 /\ X = 3 ) -> ( P ` X ) = ( P ` 3 ) ) |
| 170 |
51
|
adantr |
|- ( ( Y = 1 /\ X = 3 ) -> ( P ` Y ) = ( P ` 1 ) ) |
| 171 |
167 169 170
|
3netr4d |
|- ( ( Y = 1 /\ X = 3 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 172 |
171
|
a1d |
|- ( ( Y = 1 /\ X = 3 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 173 |
172
|
ex |
|- ( Y = 1 -> ( X = 3 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 174 |
157
|
necomi |
|- ( P ` 3 ) =/= ( P ` 2 ) |
| 175 |
174
|
a1i |
|- ( ( Y = 2 /\ X = 3 ) -> ( P ` 3 ) =/= ( P ` 2 ) ) |
| 176 |
168
|
adantl |
|- ( ( Y = 2 /\ X = 3 ) -> ( P ` X ) = ( P ` 3 ) ) |
| 177 |
71
|
adantr |
|- ( ( Y = 2 /\ X = 3 ) -> ( P ` Y ) = ( P ` 2 ) ) |
| 178 |
175 176 177
|
3netr4d |
|- ( ( Y = 2 /\ X = 3 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 179 |
178
|
a1d |
|- ( ( Y = 2 /\ X = 3 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 180 |
179
|
ex |
|- ( Y = 2 -> ( X = 3 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 181 |
|
simpr |
|- ( ( Y = 3 /\ X = 3 ) -> X = 3 ) |
| 182 |
|
simpl |
|- ( ( Y = 3 /\ X = 3 ) -> Y = 3 ) |
| 183 |
181 182
|
neeq12d |
|- ( ( Y = 3 /\ X = 3 ) -> ( X =/= Y <-> 3 =/= 3 ) ) |
| 184 |
|
eqid |
|- 3 = 3 |
| 185 |
|
eqneqall |
|- ( 3 = 3 -> ( 3 =/= 3 -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 186 |
184 185
|
ax-mp |
|- ( 3 =/= 3 -> ( P ` X ) =/= ( P ` Y ) ) |
| 187 |
183 186
|
biimtrdi |
|- ( ( Y = 3 /\ X = 3 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 188 |
187
|
ex |
|- ( Y = 3 -> ( X = 3 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 189 |
173 180 188
|
3jaoi |
|- ( ( Y = 1 \/ Y = 2 \/ Y = 3 ) -> ( X = 3 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 190 |
189 97
|
syl11 |
|- ( X = 3 -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 191 |
165 190
|
jaoi |
|- ( ( X = 2 \/ X = 3 ) -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 192 |
135 191
|
syl |
|- ( X e. { 2 , 3 } -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 193 |
134 192
|
jaoi |
|- ( ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 194 |
|
elsni |
|- ( X e. { 4 } -> X = 4 ) |
| 195 |
1
|
fveq1i |
|- ( P ` 4 ) = ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 4 ) |
| 196 |
29 30 31
|
cats1fvn |
|- ( <. 0 , 0 >. e. _V -> ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 4 ) = <. 0 , 0 >. ) |
| 197 |
28 196
|
ax-mp |
|- ( <" <. 0 , 0 >. <. 0 , 1 >. <. 1 , 1 >. <. 1 , 0 >. <. 0 , 0 >. "> ` 4 ) = <. 0 , 0 >. |
| 198 |
195 197
|
eqtri |
|- ( P ` 4 ) = <. 0 , 0 >. |
| 199 |
198 45
|
neeq12i |
|- ( ( P ` 4 ) =/= ( P ` 1 ) <-> <. 0 , 0 >. =/= <. 0 , 1 >. ) |
| 200 |
26 199
|
mpbir |
|- ( P ` 4 ) =/= ( P ` 1 ) |
| 201 |
200
|
a1i |
|- ( ( Y = 1 /\ X = 4 ) -> ( P ` 4 ) =/= ( P ` 1 ) ) |
| 202 |
|
fveq2 |
|- ( X = 4 -> ( P ` X ) = ( P ` 4 ) ) |
| 203 |
202
|
adantl |
|- ( ( Y = 1 /\ X = 4 ) -> ( P ` X ) = ( P ` 4 ) ) |
| 204 |
51
|
adantr |
|- ( ( Y = 1 /\ X = 4 ) -> ( P ` Y ) = ( P ` 1 ) ) |
| 205 |
201 203 204
|
3netr4d |
|- ( ( Y = 1 /\ X = 4 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 206 |
205
|
a1d |
|- ( ( Y = 1 /\ X = 4 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 207 |
206
|
ex |
|- ( Y = 1 -> ( X = 4 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 208 |
198 66
|
neeq12i |
|- ( ( P ` 4 ) =/= ( P ` 2 ) <-> <. 0 , 0 >. =/= <. 1 , 1 >. ) |
| 209 |
58 208
|
mpbir |
|- ( P ` 4 ) =/= ( P ` 2 ) |
| 210 |
209
|
a1i |
|- ( ( Y = 2 /\ X = 4 ) -> ( P ` 4 ) =/= ( P ` 2 ) ) |
| 211 |
202
|
adantl |
|- ( ( Y = 2 /\ X = 4 ) -> ( P ` X ) = ( P ` 4 ) ) |
| 212 |
71
|
adantr |
|- ( ( Y = 2 /\ X = 4 ) -> ( P ` Y ) = ( P ` 2 ) ) |
| 213 |
210 211 212
|
3netr4d |
|- ( ( Y = 2 /\ X = 4 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 214 |
213
|
a1d |
|- ( ( Y = 2 /\ X = 4 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 215 |
214
|
ex |
|- ( Y = 2 -> ( X = 4 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 216 |
198 86
|
neeq12i |
|- ( ( P ` 4 ) =/= ( P ` 3 ) <-> <. 0 , 0 >. =/= <. 1 , 0 >. ) |
| 217 |
78 216
|
mpbir |
|- ( P ` 4 ) =/= ( P ` 3 ) |
| 218 |
217
|
a1i |
|- ( ( Y = 3 /\ X = 4 ) -> ( P ` 4 ) =/= ( P ` 3 ) ) |
| 219 |
202
|
adantl |
|- ( ( Y = 3 /\ X = 4 ) -> ( P ` X ) = ( P ` 4 ) ) |
| 220 |
91
|
adantr |
|- ( ( Y = 3 /\ X = 4 ) -> ( P ` Y ) = ( P ` 3 ) ) |
| 221 |
218 219 220
|
3netr4d |
|- ( ( Y = 3 /\ X = 4 ) -> ( P ` X ) =/= ( P ` Y ) ) |
| 222 |
221
|
a1d |
|- ( ( Y = 3 /\ X = 4 ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 223 |
222
|
ex |
|- ( Y = 3 -> ( X = 4 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 224 |
207 215 223
|
3jaoi |
|- ( ( Y = 1 \/ Y = 2 \/ Y = 3 ) -> ( X = 4 -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 225 |
97 194 224
|
syl2imc |
|- ( X e. { 4 } -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 226 |
193 225
|
jaoi |
|- ( ( ( X e. { 0 , 1 } \/ X e. { 2 , 3 } ) \/ X e. { 4 } ) -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 227 |
20 226
|
sylbi |
|- ( X e. ( ( { 0 , 1 } u. { 2 , 3 } ) u. { 4 } ) -> ( Y e. { 1 , 2 , 3 } -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) ) |
| 228 |
227
|
imp |
|- ( ( X e. ( ( { 0 , 1 } u. { 2 , 3 } ) u. { 4 } ) /\ Y e. { 1 , 2 , 3 } ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |
| 229 |
14 16 228
|
syl2anb |
|- ( ( X e. ( 0 ..^ ( # ` P ) ) /\ Y e. ( 1 ..^ 4 ) ) -> ( X =/= Y -> ( P ` X ) =/= ( P ` Y ) ) ) |