Metamath Proof Explorer


Theorem gpgprismgr4cycllem7

Description: Lemma 7 for gpgprismgr4cycl0 : the cycle <. P , F >. is proper, i.e., it has no overlapping vertices, except the first and the last one. (Contributed by AV, 1-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
Assertion gpgprismgr4cycllem7 X 0 ..^ P Y 1 ..^ 4 X Y P X P Y

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
2 1 gpgprismgr4cycllem4 P = 5
3 df-5 5 = 4 + 1
4 2 3 eqtri P = 4 + 1
5 4 oveq2i 0 ..^ P = 0 ..^ 4 + 1
6 4nn0 4 0
7 elnn0uz 4 0 4 0
8 6 7 mpbi 4 0
9 fzosplitsn 4 0 0 ..^ 4 + 1 = 0 ..^ 4 4
10 8 9 ax-mp 0 ..^ 4 + 1 = 0 ..^ 4 4
11 fzo0to42pr 0 ..^ 4 = 0 1 2 3
12 11 uneq1i 0 ..^ 4 4 = 0 1 2 3 4
13 5 10 12 3eqtri 0 ..^ P = 0 1 2 3 4
14 13 eleq2i X 0 ..^ P X 0 1 2 3 4
15 fzo1to4tp 1 ..^ 4 = 1 2 3
16 15 eleq2i Y 1 ..^ 4 Y 1 2 3
17 elun X 0 1 2 3 4 X 0 1 2 3 X 4
18 elun X 0 1 2 3 X 0 1 X 2 3
19 18 orbi1i X 0 1 2 3 X 4 X 0 1 X 2 3 X 4
20 17 19 bitri X 0 1 2 3 4 X 0 1 X 2 3 X 4
21 elpri X 0 1 X = 0 X = 1
22 0ne1 0 1
23 22 olci 0 0 0 1
24 c0ex 0 V
25 24 24 opthne 0 0 0 1 0 0 0 1
26 23 25 mpbir 0 0 0 1
27 1 fveq1i P 0 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0
28 opex 0 0 V
29 df-s5 ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ = ⟨“ 0 0 0 1 1 1 1 0 ”⟩ ++ ⟨“ 0 0 ”⟩
30 s4cli ⟨“ 0 0 0 1 1 1 1 0 ”⟩ Word V
31 s4len ⟨“ 0 0 0 1 1 1 1 0 ”⟩ = 4
32 s4fv0 0 0 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 0 = 0 0
33 0nn0 0 0
34 4pos 0 < 4
35 29 30 31 32 33 34 cats1fv 0 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0 = 0 0
36 28 35 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0 = 0 0
37 27 36 eqtri P 0 = 0 0
38 1 fveq1i P 1 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 1
39 opex 0 1 V
40 s4fv1 0 1 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 1 = 0 1
41 1nn0 1 0
42 1lt4 1 < 4
43 29 30 31 40 41 42 cats1fv 0 1 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 1 = 0 1
44 39 43 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 1 = 0 1
45 38 44 eqtri P 1 = 0 1
46 37 45 neeq12i P 0 P 1 0 0 0 1
47 26 46 mpbir P 0 P 1
48 47 a1i Y = 1 X = 0 P 0 P 1
49 fveq2 X = 0 P X = P 0
50 49 adantl Y = 1 X = 0 P X = P 0
51 fveq2 Y = 1 P Y = P 1
52 51 adantr Y = 1 X = 0 P Y = P 1
53 48 50 52 3netr4d Y = 1 X = 0 P X P Y
54 53 a1d Y = 1 X = 0 X Y P X P Y
55 54 ex Y = 1 X = 0 X Y P X P Y
56 22 orci 0 1 0 1
57 24 24 opthne 0 0 1 1 0 1 0 1
58 56 57 mpbir 0 0 1 1
59 1 fveq1i P 2 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 2
60 opex 1 1 V
61 s4fv2 1 1 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 2 = 1 1
62 2nn0 2 0
63 2lt4 2 < 4
64 29 30 31 61 62 63 cats1fv 1 1 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 2 = 1 1
65 60 64 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 2 = 1 1
66 59 65 eqtri P 2 = 1 1
67 37 66 neeq12i P 0 P 2 0 0 1 1
68 58 67 mpbir P 0 P 2
69 68 a1i Y = 2 X = 0 P 0 P 2
70 49 adantl Y = 2 X = 0 P X = P 0
71 fveq2 Y = 2 P Y = P 2
72 71 adantr Y = 2 X = 0 P Y = P 2
73 69 70 72 3netr4d Y = 2 X = 0 P X P Y
74 73 a1d Y = 2 X = 0 X Y P X P Y
75 74 ex Y = 2 X = 0 X Y P X P Y
76 22 orci 0 1 0 0
77 24 24 opthne 0 0 1 0 0 1 0 0
78 76 77 mpbir 0 0 1 0
79 1 fveq1i P 3 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 3
80 opex 1 0 V
81 s4fv3 1 0 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 3 = 1 0
82 3nn0 3 0
83 3lt4 3 < 4
84 29 30 31 81 82 83 cats1fv 1 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 3 = 1 0
85 80 84 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 3 = 1 0
86 79 85 eqtri P 3 = 1 0
87 37 86 neeq12i P 0 P 3 0 0 1 0
88 78 87 mpbir P 0 P 3
89 88 a1i Y = 3 X = 0 P 0 P 3
90 49 adantl Y = 3 X = 0 P X = P 0
91 fveq2 Y = 3 P Y = P 3
92 91 adantr Y = 3 X = 0 P Y = P 3
93 89 90 92 3netr4d Y = 3 X = 0 P X P Y
94 93 a1d Y = 3 X = 0 X Y P X P Y
95 94 ex Y = 3 X = 0 X Y P X P Y
96 55 75 95 3jaoi Y = 1 Y = 2 Y = 3 X = 0 X Y P X P Y
97 eltpi Y 1 2 3 Y = 1 Y = 2 Y = 3
98 96 97 syl11 X = 0 Y 1 2 3 X Y P X P Y
99 simpr Y = 1 X = 1 X = 1
100 simpl Y = 1 X = 1 Y = 1
101 99 100 neeq12d Y = 1 X = 1 X Y 1 1
102 eqid 1 = 1
103 eqneqall 1 = 1 1 1 P X P Y
104 102 103 ax-mp 1 1 P X P Y
105 101 104 biimtrdi Y = 1 X = 1 X Y P X P Y
106 105 ex Y = 1 X = 1 X Y P X P Y
107 22 orci 0 1 1 1
108 1ex 1 V
109 24 108 opthne 0 1 1 1 0 1 1 1
110 107 109 mpbir 0 1 1 1
111 45 66 neeq12i P 1 P 2 0 1 1 1
112 110 111 mpbir P 1 P 2
113 112 a1i Y = 2 X = 1 P 1 P 2
114 fveq2 X = 1 P X = P 1
115 114 adantl Y = 2 X = 1 P X = P 1
116 71 adantr Y = 2 X = 1 P Y = P 2
117 113 115 116 3netr4d Y = 2 X = 1 P X P Y
118 117 a1d Y = 2 X = 1 X Y P X P Y
119 118 ex Y = 2 X = 1 X Y P X P Y
120 22 orci 0 1 1 0
121 24 108 opthne 0 1 1 0 0 1 1 0
122 120 121 mpbir 0 1 1 0
123 45 86 neeq12i P 1 P 3 0 1 1 0
124 122 123 mpbir P 1 P 3
125 124 a1i Y = 3 X = 1 P 1 P 3
126 114 adantl Y = 3 X = 1 P X = P 1
127 91 adantr Y = 3 X = 1 P Y = P 3
128 125 126 127 3netr4d Y = 3 X = 1 P X P Y
129 128 a1d Y = 3 X = 1 X Y P X P Y
130 129 ex Y = 3 X = 1 X Y P X P Y
131 106 119 130 3jaoi Y = 1 Y = 2 Y = 3 X = 1 X Y P X P Y
132 131 97 syl11 X = 1 Y 1 2 3 X Y P X P Y
133 98 132 jaoi X = 0 X = 1 Y 1 2 3 X Y P X P Y
134 21 133 syl X 0 1 Y 1 2 3 X Y P X P Y
135 elpri X 2 3 X = 2 X = 3
136 112 necomi P 2 P 1
137 136 a1i Y = 1 X = 2 P 2 P 1
138 fveq2 X = 2 P X = P 2
139 138 adantl Y = 1 X = 2 P X = P 2
140 51 adantr Y = 1 X = 2 P Y = P 1
141 137 139 140 3netr4d Y = 1 X = 2 P X P Y
142 141 a1d Y = 1 X = 2 X Y P X P Y
143 142 ex Y = 1 X = 2 X Y P X P Y
144 simpr Y = 2 X = 2 X = 2
145 simpl Y = 2 X = 2 Y = 2
146 144 145 neeq12d Y = 2 X = 2 X Y 2 2
147 eqid 2 = 2
148 eqneqall 2 = 2 2 2 P X P Y
149 147 148 ax-mp 2 2 P X P Y
150 146 149 biimtrdi Y = 2 X = 2 X Y P X P Y
151 150 ex Y = 2 X = 2 X Y P X P Y
152 22 necomi 1 0
153 152 olci 1 1 1 0
154 108 108 opthne 1 1 1 0 1 1 1 0
155 153 154 mpbir 1 1 1 0
156 66 86 neeq12i P 2 P 3 1 1 1 0
157 155 156 mpbir P 2 P 3
158 157 a1i Y = 3 X = 2 P 2 P 3
159 138 adantl Y = 3 X = 2 P X = P 2
160 91 adantr Y = 3 X = 2 P Y = P 3
161 158 159 160 3netr4d Y = 3 X = 2 P X P Y
162 161 a1d Y = 3 X = 2 X Y P X P Y
163 162 ex Y = 3 X = 2 X Y P X P Y
164 143 151 163 3jaoi Y = 1 Y = 2 Y = 3 X = 2 X Y P X P Y
165 164 97 syl11 X = 2 Y 1 2 3 X Y P X P Y
166 124 necomi P 3 P 1
167 166 a1i Y = 1 X = 3 P 3 P 1
168 fveq2 X = 3 P X = P 3
169 168 adantl Y = 1 X = 3 P X = P 3
170 51 adantr Y = 1 X = 3 P Y = P 1
171 167 169 170 3netr4d Y = 1 X = 3 P X P Y
172 171 a1d Y = 1 X = 3 X Y P X P Y
173 172 ex Y = 1 X = 3 X Y P X P Y
174 157 necomi P 3 P 2
175 174 a1i Y = 2 X = 3 P 3 P 2
176 168 adantl Y = 2 X = 3 P X = P 3
177 71 adantr Y = 2 X = 3 P Y = P 2
178 175 176 177 3netr4d Y = 2 X = 3 P X P Y
179 178 a1d Y = 2 X = 3 X Y P X P Y
180 179 ex Y = 2 X = 3 X Y P X P Y
181 simpr Y = 3 X = 3 X = 3
182 simpl Y = 3 X = 3 Y = 3
183 181 182 neeq12d Y = 3 X = 3 X Y 3 3
184 eqid 3 = 3
185 eqneqall 3 = 3 3 3 P X P Y
186 184 185 ax-mp 3 3 P X P Y
187 183 186 biimtrdi Y = 3 X = 3 X Y P X P Y
188 187 ex Y = 3 X = 3 X Y P X P Y
189 173 180 188 3jaoi Y = 1 Y = 2 Y = 3 X = 3 X Y P X P Y
190 189 97 syl11 X = 3 Y 1 2 3 X Y P X P Y
191 165 190 jaoi X = 2 X = 3 Y 1 2 3 X Y P X P Y
192 135 191 syl X 2 3 Y 1 2 3 X Y P X P Y
193 134 192 jaoi X 0 1 X 2 3 Y 1 2 3 X Y P X P Y
194 elsni X 4 X = 4
195 1 fveq1i P 4 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4
196 29 30 31 cats1fvn 0 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4 = 0 0
197 28 196 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4 = 0 0
198 195 197 eqtri P 4 = 0 0
199 198 45 neeq12i P 4 P 1 0 0 0 1
200 26 199 mpbir P 4 P 1
201 200 a1i Y = 1 X = 4 P 4 P 1
202 fveq2 X = 4 P X = P 4
203 202 adantl Y = 1 X = 4 P X = P 4
204 51 adantr Y = 1 X = 4 P Y = P 1
205 201 203 204 3netr4d Y = 1 X = 4 P X P Y
206 205 a1d Y = 1 X = 4 X Y P X P Y
207 206 ex Y = 1 X = 4 X Y P X P Y
208 198 66 neeq12i P 4 P 2 0 0 1 1
209 58 208 mpbir P 4 P 2
210 209 a1i Y = 2 X = 4 P 4 P 2
211 202 adantl Y = 2 X = 4 P X = P 4
212 71 adantr Y = 2 X = 4 P Y = P 2
213 210 211 212 3netr4d Y = 2 X = 4 P X P Y
214 213 a1d Y = 2 X = 4 X Y P X P Y
215 214 ex Y = 2 X = 4 X Y P X P Y
216 198 86 neeq12i P 4 P 3 0 0 1 0
217 78 216 mpbir P 4 P 3
218 217 a1i Y = 3 X = 4 P 4 P 3
219 202 adantl Y = 3 X = 4 P X = P 4
220 91 adantr Y = 3 X = 4 P Y = P 3
221 218 219 220 3netr4d Y = 3 X = 4 P X P Y
222 221 a1d Y = 3 X = 4 X Y P X P Y
223 222 ex Y = 3 X = 4 X Y P X P Y
224 207 215 223 3jaoi Y = 1 Y = 2 Y = 3 X = 4 X Y P X P Y
225 97 194 224 syl2imc X 4 Y 1 2 3 X Y P X P Y
226 193 225 jaoi X 0 1 X 2 3 X 4 Y 1 2 3 X Y P X P Y
227 20 226 sylbi X 0 1 2 3 4 Y 1 2 3 X Y P X P Y
228 227 imp X 0 1 2 3 4 Y 1 2 3 X Y P X P Y
229 14 16 228 syl2anb X 0 ..^ P Y 1 ..^ 4 X Y P X P Y