Metamath Proof Explorer


Theorem gpgprismgr4cycllem8

Description: Lemma 8 for gpgprismgr4cycl0 . (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
Assertion gpgprismgr4cycllem8 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p 𝑃 = ⟨“ ⟨ 0 , 0 ⟩ ⟨ 0 , 1 ⟩ ⟨ 1 , 1 ⟩ ⟨ 1 , 0 ⟩ ⟨ 0 , 0 ⟩ ”⟩
2 gpgprismgr4cycl.f 𝐹 = ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩
3 gpgprismgr4cycl.g 𝐺 = ( 𝑁 gPetersenGr 1 )
4 df-s4 ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ”⟩ ++ ⟨“ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ )
5 2 4 eqtri 𝐹 = ( ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ”⟩ ++ ⟨“ { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ”⟩ )
6 gpgprismgriedgdmss ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
7 unss ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) ↔ ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
8 prex { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ V
9 prex { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ V
10 8 9 prss ( ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) ↔ { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
11 3 eqcomi ( 𝑁 gPetersenGr 1 ) = 𝐺
12 11 fveq2i ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) = ( iEdg ‘ 𝐺 )
13 12 dmeqi dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) = dom ( iEdg ‘ 𝐺 )
14 13 eleq2i ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
15 14 biimpi ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
16 15 adantr ( ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
17 10 16 sylbir ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
18 17 adantr ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
19 7 18 sylbir ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
20 6 19 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
21 prex { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ V
22 prex { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ V
23 21 22 prss ( ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) ↔ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
24 prcom { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ }
25 24 13 eleq12i ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
26 25 biimpi ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
27 26 adantr ( ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
28 23 27 sylbir ( { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
29 28 adantl ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
30 7 29 sylbir ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
31 6 30 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
32 13 eleq2i ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
33 32 biimpi ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
34 33 adantl ( ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
35 23 34 sylbir ( { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
36 35 adantl ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
37 7 36 sylbir ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
38 6 37 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
39 20 31 38 s3cld ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨“ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ”⟩ ∈ Word dom ( iEdg ‘ 𝐺 ) )
40 simpr ( ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
41 10 40 sylbir ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
42 prcom { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
43 3 fveq2i ( iEdg ‘ 𝐺 ) = ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) )
44 43 dmeqi dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) )
45 41 42 44 3eltr4g ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
46 45 adantr ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ∧ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) → { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
47 7 46 sylbir ( ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) → { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
48 6 47 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 0 ⟩ , ⟨ 0 , 0 ⟩ } ∈ dom ( iEdg ‘ 𝐺 ) )
49 5 39 48 cats1cld ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) )