Metamath Proof Explorer


Theorem gpgprismgriedgdmss

Description: A subset of the index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion gpgprismgriedgdmss ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )

Proof

Step Hyp Ref Expression
1 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
2 lbfzo0 ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ )
3 1 2 sylibr ( 𝑁 ∈ ( ℤ ‘ 3 ) → 0 ∈ ( 0 ..^ 𝑁 ) )
4 opeq2 ( 𝑥 = 0 → ⟨ 0 , 𝑥 ⟩ = ⟨ 0 , 0 ⟩ )
5 oveq1 ( 𝑥 = 0 → ( 𝑥 + 1 ) = ( 0 + 1 ) )
6 0p1e1 ( 0 + 1 ) = 1
7 5 6 eqtrdi ( 𝑥 = 0 → ( 𝑥 + 1 ) = 1 )
8 7 oveq1d ( 𝑥 = 0 → ( ( 𝑥 + 1 ) mod 𝑁 ) = ( 1 mod 𝑁 ) )
9 8 opeq2d ( 𝑥 = 0 → ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( 1 mod 𝑁 ) ⟩ )
10 4 9 preq12d ( 𝑥 = 0 → { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( 1 mod 𝑁 ) ⟩ } )
11 10 eqeq2d ( 𝑥 = 0 → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( 1 mod 𝑁 ) ⟩ } ) )
12 11 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑥 = 0 ) → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( 1 mod 𝑁 ) ⟩ } ) )
13 uzuzle23 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
14 eluz2b1 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
15 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
16 15 anim1i ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) )
17 14 16 sylbi ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) )
18 1mod ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 )
19 13 17 18 3syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 1 mod 𝑁 ) = 1 )
20 19 eqcomd ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 = ( 1 mod 𝑁 ) )
21 20 opeq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 0 , 1 ⟩ = ⟨ 0 , ( 1 mod 𝑁 ) ⟩ )
22 21 preq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 0 , ( 1 mod 𝑁 ) ⟩ } )
23 3 12 22 rspcedvd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } )
24 23 3mix1d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
25 3r19.43 ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
26 24 25 sylibr ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
27 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
28 eqid ( 𝑁 gPetersenGr 1 ) = ( 𝑁 gPetersenGr 1 )
29 27 28 gpgprismgriedgdmel ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
30 26 29 mpbird ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
31 opeq2 ( 𝑥 = 0 → ⟨ 1 , 𝑥 ⟩ = ⟨ 1 , 0 ⟩ )
32 4 31 preq12d ( 𝑥 = 0 → { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } )
33 32 eqeq2d ( 𝑥 = 0 → ( { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ) )
34 33 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑥 = 0 ) → ( { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ) )
35 eqid { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
36 35 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } )
37 3 34 36 rspcedvd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } )
38 37 3mix2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
39 3r19.43 ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
40 38 39 sylibr ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
41 27 28 gpgprismgriedgdmel ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
42 40 41 mpbird ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
43 30 42 prssd ( 𝑁 ∈ ( ℤ ‘ 3 ) → { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
44 1nn0 1 ∈ ℕ0
45 44 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ℕ0 )
46 eluz2gt1 ( 𝑁 ∈ ( ℤ ‘ 2 ) → 1 < 𝑁 )
47 13 46 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 < 𝑁 )
48 elfzo0 ( 1 ∈ ( 0 ..^ 𝑁 ) ↔ ( 1 ∈ ℕ0𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )
49 45 1 47 48 syl3anbrc ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 0 ..^ 𝑁 ) )
50 opeq2 ( 𝑥 = 1 → ⟨ 0 , 𝑥 ⟩ = ⟨ 0 , 1 ⟩ )
51 opeq2 ( 𝑥 = 1 → ⟨ 1 , 𝑥 ⟩ = ⟨ 1 , 1 ⟩ )
52 50 51 preq12d ( 𝑥 = 1 → { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } )
53 52 eqeq2d ( 𝑥 = 1 → ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ) )
54 53 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑥 = 1 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } ) )
55 prcom { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ }
56 55 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 1 ⟩ , ⟨ 1 , 1 ⟩ } )
57 49 54 56 rspcedvd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } )
58 57 3mix2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
59 3r19.43 ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
60 58 59 sylibr ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
61 27 28 gpgprismgriedgdmel ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
62 60 61 mpbird ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
63 8 opeq2d ( 𝑥 = 0 → ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( 1 mod 𝑁 ) ⟩ )
64 31 63 preq12d ( 𝑥 = 0 → { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( 1 mod 𝑁 ) ⟩ } )
65 64 eqeq2d ( 𝑥 = 0 → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( 1 mod 𝑁 ) ⟩ } ) )
66 65 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑥 = 0 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( 1 mod 𝑁 ) ⟩ } ) )
67 prcom { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , 1 ⟩ }
68 20 opeq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ 1 , 1 ⟩ = ⟨ 1 , ( 1 mod 𝑁 ) ⟩ )
69 68 preq2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 0 ⟩ , ⟨ 1 , 1 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( 1 mod 𝑁 ) ⟩ } )
70 67 69 eqtrid ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 0 ⟩ , ⟨ 1 , ( 1 mod 𝑁 ) ⟩ } )
71 3 66 70 rspcedvd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } )
72 71 3mix3d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
73 3r19.43 ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
74 72 73 sylibr ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
75 27 28 gpgprismgriedgdmel ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
76 74 75 mpbird ( 𝑁 ∈ ( ℤ ‘ 3 ) → { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
77 62 76 prssd ( 𝑁 ∈ ( ℤ ‘ 3 ) → { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )
78 43 77 unssd ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { { ⟨ 0 , 0 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } } ∪ { { ⟨ 1 , 1 ⟩ , ⟨ 0 , 1 ⟩ } , { ⟨ 1 , 1 ⟩ , ⟨ 1 , 0 ⟩ } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) )