| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 2 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) |
| 3 |
1 2
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 4 |
|
opeq2 |
⊢ ( 𝑥 = 0 → 〈 0 , 𝑥 〉 = 〈 0 , 0 〉 ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = ( 0 + 1 ) ) |
| 6 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = 1 ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 + 1 ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |
| 9 |
8
|
opeq2d |
⊢ ( 𝑥 = 0 → 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 = 〈 0 , ( 1 mod 𝑁 ) 〉 ) |
| 10 |
4 9
|
preq12d |
⊢ ( 𝑥 = 0 → { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } = { 〈 0 , 0 〉 , 〈 0 , ( 1 mod 𝑁 ) 〉 } ) |
| 11 |
10
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ↔ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 0 〉 , 〈 0 , ( 1 mod 𝑁 ) 〉 } ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑥 = 0 ) → ( { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ↔ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 0 〉 , 〈 0 , ( 1 mod 𝑁 ) 〉 } ) ) |
| 13 |
|
uzuzle23 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 14 |
|
eluz2b1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) |
| 15 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 16 |
15
|
anim1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) ) |
| 17 |
14 16
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) ) |
| 18 |
|
1mod |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) |
| 19 |
13 17 18
|
3syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 1 mod 𝑁 ) = 1 ) |
| 20 |
19
|
eqcomd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 = ( 1 mod 𝑁 ) ) |
| 21 |
20
|
opeq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 〈 0 , 1 〉 = 〈 0 , ( 1 mod 𝑁 ) 〉 ) |
| 22 |
21
|
preq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 0 〉 , 〈 0 , ( 1 mod 𝑁 ) 〉 } ) |
| 23 |
3 12 22
|
rspcedvd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) |
| 24 |
23
|
3mix1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 25 |
|
3r19.43 |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 27 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
| 28 |
|
eqid |
⊢ ( 𝑁 gPetersenGr 1 ) = ( 𝑁 gPetersenGr 1 ) |
| 29 |
27 28
|
gpgprismgriedgdmel |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 〈 0 , 0 〉 , 〈 0 , 1 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 0 , 0 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) ) |
| 30 |
26 29
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 0 , 0 〉 , 〈 0 , 1 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) |
| 31 |
|
opeq2 |
⊢ ( 𝑥 = 0 → 〈 1 , 𝑥 〉 = 〈 1 , 0 〉 ) |
| 32 |
4 31
|
preq12d |
⊢ ( 𝑥 = 0 → { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ) |
| 33 |
32
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ↔ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑥 = 0 ) → ( { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ↔ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ) ) |
| 35 |
|
eqid |
⊢ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } |
| 36 |
35
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ) |
| 37 |
3 34 36
|
rspcedvd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) |
| 38 |
37
|
3mix2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 39 |
|
3r19.43 |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 40 |
38 39
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 41 |
27 28
|
gpgprismgriedgdmel |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) ) |
| 42 |
40 41
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) |
| 43 |
30 42
|
prssd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { { 〈 0 , 0 〉 , 〈 0 , 1 〉 } , { 〈 0 , 0 〉 , 〈 1 , 0 〉 } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) |
| 44 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 45 |
44
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ℕ0 ) |
| 46 |
|
eluz2gt1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑁 ) |
| 47 |
13 46
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 < 𝑁 ) |
| 48 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 𝑁 ) ↔ ( 1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 49 |
45 1 47 48
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 0 ..^ 𝑁 ) ) |
| 50 |
|
opeq2 |
⊢ ( 𝑥 = 1 → 〈 0 , 𝑥 〉 = 〈 0 , 1 〉 ) |
| 51 |
|
opeq2 |
⊢ ( 𝑥 = 1 → 〈 1 , 𝑥 〉 = 〈 1 , 1 〉 ) |
| 52 |
50 51
|
preq12d |
⊢ ( 𝑥 = 1 → { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } = { 〈 0 , 1 〉 , 〈 1 , 1 〉 } ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑥 = 1 → ( { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ↔ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 1 〉 , 〈 1 , 1 〉 } ) ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑥 = 1 ) → ( { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ↔ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 1 〉 , 〈 1 , 1 〉 } ) ) |
| 55 |
|
prcom |
⊢ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 1 〉 , 〈 1 , 1 〉 } |
| 56 |
55
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 1 〉 , 〈 1 , 1 〉 } ) |
| 57 |
49 54 56
|
rspcedvd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) |
| 58 |
57
|
3mix2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 59 |
|
3r19.43 |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 60 |
58 59
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 61 |
27 28
|
gpgprismgriedgdmel |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 〈 1 , 1 〉 , 〈 0 , 1 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 1 , 1 〉 , 〈 0 , 1 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) ) |
| 62 |
60 61
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 1 , 1 〉 , 〈 0 , 1 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) |
| 63 |
8
|
opeq2d |
⊢ ( 𝑥 = 0 → 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 = 〈 1 , ( 1 mod 𝑁 ) 〉 ) |
| 64 |
31 63
|
preq12d |
⊢ ( 𝑥 = 0 → { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } = { 〈 1 , 0 〉 , 〈 1 , ( 1 mod 𝑁 ) 〉 } ) |
| 65 |
64
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ↔ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 0 〉 , 〈 1 , ( 1 mod 𝑁 ) 〉 } ) ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑥 = 0 ) → ( { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ↔ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 0 〉 , 〈 1 , ( 1 mod 𝑁 ) 〉 } ) ) |
| 67 |
|
prcom |
⊢ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 0 〉 , 〈 1 , 1 〉 } |
| 68 |
20
|
opeq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 〈 1 , 1 〉 = 〈 1 , ( 1 mod 𝑁 ) 〉 ) |
| 69 |
68
|
preq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 1 , 0 〉 , 〈 1 , 1 〉 } = { 〈 1 , 0 〉 , 〈 1 , ( 1 mod 𝑁 ) 〉 } ) |
| 70 |
67 69
|
eqtrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 0 〉 , 〈 1 , ( 1 mod 𝑁 ) 〉 } ) |
| 71 |
3 66 70
|
rspcedvd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) |
| 72 |
71
|
3mix3d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 73 |
|
3r19.43 |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ↔ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 74 |
72 73
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) |
| 75 |
27 28
|
gpgprismgriedgdmel |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 〈 1 , 1 〉 , 〈 1 , 0 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ { 〈 1 , 1 〉 , 〈 1 , 0 〉 } = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) ) |
| 76 |
74 75
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 〈 1 , 1 〉 , 〈 1 , 0 〉 } ∈ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) |
| 77 |
62 76
|
prssd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { { 〈 1 , 1 〉 , 〈 0 , 1 〉 } , { 〈 1 , 1 〉 , 〈 1 , 0 〉 } } ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) |
| 78 |
43 77
|
unssd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { { 〈 0 , 0 〉 , 〈 0 , 1 〉 } , { 〈 0 , 0 〉 , 〈 1 , 0 〉 } } ∪ { { 〈 1 , 1 〉 , 〈 0 , 1 〉 } , { 〈 1 , 1 〉 , 〈 1 , 0 〉 } } ) ⊆ dom ( iEdg ‘ ( 𝑁 gPetersenGr 1 ) ) ) |