Metamath Proof Explorer


Theorem gpgprismgriedgdmss

Description: A subset of the index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion gpgprismgriedgdmss Could not format assertion : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( { { <. 0 , 0 >. , <. 0 , 1 >. } , { <. 0 , 0 >. , <. 1 , 0 >. } } u. { { <. 1 , 1 >. , <. 0 , 1 >. } , { <. 1 , 1 >. , <. 1 , 0 >. } } ) C_ dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 eluzge3nn N 3 N
2 lbfzo0 0 0 ..^ N N
3 1 2 sylibr N 3 0 0 ..^ N
4 opeq2 x = 0 0 x = 0 0
5 oveq1 x = 0 x + 1 = 0 + 1
6 0p1e1 0 + 1 = 1
7 5 6 eqtrdi x = 0 x + 1 = 1
8 7 oveq1d x = 0 x + 1 mod N = 1 mod N
9 8 opeq2d x = 0 0 x + 1 mod N = 0 1 mod N
10 4 9 preq12d x = 0 0 x 0 x + 1 mod N = 0 0 0 1 mod N
11 10 eqeq2d x = 0 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 0 0 1 mod N
12 11 adantl N 3 x = 0 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 0 0 1 mod N
13 uzuzle23 N 3 N 2
14 eluz2b1 N 2 N 1 < N
15 zre N N
16 15 anim1i N 1 < N N 1 < N
17 14 16 sylbi N 2 N 1 < N
18 1mod N 1 < N 1 mod N = 1
19 13 17 18 3syl N 3 1 mod N = 1
20 19 eqcomd N 3 1 = 1 mod N
21 20 opeq2d N 3 0 1 = 0 1 mod N
22 21 preq2d N 3 0 0 0 1 = 0 0 0 1 mod N
23 3 12 22 rspcedvd N 3 x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N
24 23 3mix1d N 3 x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N x 0 ..^ N 0 0 0 1 = 0 x 1 x x 0 ..^ N 0 0 0 1 = 1 x 1 x + 1 mod N
25 3r19.43 x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N x 0 ..^ N 0 0 0 1 = 0 x 1 x x 0 ..^ N 0 0 0 1 = 1 x 1 x + 1 mod N
26 24 25 sylibr N 3 x 0 ..^ N 0 0 0 1 = 0 x 0 x + 1 mod N 0 0 0 1 = 0 x 1 x 0 0 0 1 = 1 x 1 x + 1 mod N
27 eqid 0 ..^ N = 0 ..^ N
28 eqid Could not format ( N gPetersenGr 1 ) = ( N gPetersenGr 1 ) : No typesetting found for |- ( N gPetersenGr 1 ) = ( N gPetersenGr 1 ) with typecode |-
29 27 28 gpgprismgriedgdmel Could not format ( N e. ( ZZ>= ` 3 ) -> ( { <. 0 , 0 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 0 , 0 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , 0 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , 0 >. , <. 0 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( { <. 0 , 0 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 0 , 0 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , 0 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , 0 >. , <. 0 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) with typecode |-
30 26 29 mpbird Could not format ( N e. ( ZZ>= ` 3 ) -> { <. 0 , 0 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> { <. 0 , 0 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-
31 opeq2 x = 0 1 x = 1 0
32 4 31 preq12d x = 0 0 x 1 x = 0 0 1 0
33 32 eqeq2d x = 0 0 0 1 0 = 0 x 1 x 0 0 1 0 = 0 0 1 0
34 33 adantl N 3 x = 0 0 0 1 0 = 0 x 1 x 0 0 1 0 = 0 0 1 0
35 eqid 0 0 1 0 = 0 0 1 0
36 35 a1i N 3 0 0 1 0 = 0 0 1 0
37 3 34 36 rspcedvd N 3 x 0 ..^ N 0 0 1 0 = 0 x 1 x
38 37 3mix2d N 3 x 0 ..^ N 0 0 1 0 = 0 x 0 x + 1 mod N x 0 ..^ N 0 0 1 0 = 0 x 1 x x 0 ..^ N 0 0 1 0 = 1 x 1 x + 1 mod N
39 3r19.43 x 0 ..^ N 0 0 1 0 = 0 x 0 x + 1 mod N 0 0 1 0 = 0 x 1 x 0 0 1 0 = 1 x 1 x + 1 mod N x 0 ..^ N 0 0 1 0 = 0 x 0 x + 1 mod N x 0 ..^ N 0 0 1 0 = 0 x 1 x x 0 ..^ N 0 0 1 0 = 1 x 1 x + 1 mod N
40 38 39 sylibr N 3 x 0 ..^ N 0 0 1 0 = 0 x 0 x + 1 mod N 0 0 1 0 = 0 x 1 x 0 0 1 0 = 1 x 1 x + 1 mod N
41 27 28 gpgprismgriedgdmel Could not format ( N e. ( ZZ>= ` 3 ) -> ( { <. 0 , 0 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( { <. 0 , 0 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) with typecode |-
42 40 41 mpbird Could not format ( N e. ( ZZ>= ` 3 ) -> { <. 0 , 0 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> { <. 0 , 0 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-
43 30 42 prssd Could not format ( N e. ( ZZ>= ` 3 ) -> { { <. 0 , 0 >. , <. 0 , 1 >. } , { <. 0 , 0 >. , <. 1 , 0 >. } } C_ dom ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> { { <. 0 , 0 >. , <. 0 , 1 >. } , { <. 0 , 0 >. , <. 1 , 0 >. } } C_ dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-
44 1nn0 1 0
45 44 a1i N 3 1 0
46 eluz2gt1 N 2 1 < N
47 13 46 syl N 3 1 < N
48 elfzo0 1 0 ..^ N 1 0 N 1 < N
49 45 1 47 48 syl3anbrc N 3 1 0 ..^ N
50 opeq2 x = 1 0 x = 0 1
51 opeq2 x = 1 1 x = 1 1
52 50 51 preq12d x = 1 0 x 1 x = 0 1 1 1
53 52 eqeq2d x = 1 1 1 0 1 = 0 x 1 x 1 1 0 1 = 0 1 1 1
54 53 adantl N 3 x = 1 1 1 0 1 = 0 x 1 x 1 1 0 1 = 0 1 1 1
55 prcom 1 1 0 1 = 0 1 1 1
56 55 a1i N 3 1 1 0 1 = 0 1 1 1
57 49 54 56 rspcedvd N 3 x 0 ..^ N 1 1 0 1 = 0 x 1 x
58 57 3mix2d N 3 x 0 ..^ N 1 1 0 1 = 0 x 0 x + 1 mod N x 0 ..^ N 1 1 0 1 = 0 x 1 x x 0 ..^ N 1 1 0 1 = 1 x 1 x + 1 mod N
59 3r19.43 x 0 ..^ N 1 1 0 1 = 0 x 0 x + 1 mod N 1 1 0 1 = 0 x 1 x 1 1 0 1 = 1 x 1 x + 1 mod N x 0 ..^ N 1 1 0 1 = 0 x 0 x + 1 mod N x 0 ..^ N 1 1 0 1 = 0 x 1 x x 0 ..^ N 1 1 0 1 = 1 x 1 x + 1 mod N
60 58 59 sylibr N 3 x 0 ..^ N 1 1 0 1 = 0 x 0 x + 1 mod N 1 1 0 1 = 0 x 1 x 1 1 0 1 = 1 x 1 x + 1 mod N
61 27 28 gpgprismgriedgdmel Could not format ( N e. ( ZZ>= ` 3 ) -> ( { <. 1 , 1 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 1 , 1 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , 1 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 1 >. , <. 0 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( { <. 1 , 1 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 1 , 1 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , 1 >. , <. 0 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 1 >. , <. 0 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) with typecode |-
62 60 61 mpbird Could not format ( N e. ( ZZ>= ` 3 ) -> { <. 1 , 1 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> { <. 1 , 1 >. , <. 0 , 1 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-
63 8 opeq2d x = 0 1 x + 1 mod N = 1 1 mod N
64 31 63 preq12d x = 0 1 x 1 x + 1 mod N = 1 0 1 1 mod N
65 64 eqeq2d x = 0 1 1 1 0 = 1 x 1 x + 1 mod N 1 1 1 0 = 1 0 1 1 mod N
66 65 adantl N 3 x = 0 1 1 1 0 = 1 x 1 x + 1 mod N 1 1 1 0 = 1 0 1 1 mod N
67 prcom 1 1 1 0 = 1 0 1 1
68 20 opeq2d N 3 1 1 = 1 1 mod N
69 68 preq2d N 3 1 0 1 1 = 1 0 1 1 mod N
70 67 69 eqtrid N 3 1 1 1 0 = 1 0 1 1 mod N
71 3 66 70 rspcedvd N 3 x 0 ..^ N 1 1 1 0 = 1 x 1 x + 1 mod N
72 71 3mix3d N 3 x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N x 0 ..^ N 1 1 1 0 = 0 x 1 x x 0 ..^ N 1 1 1 0 = 1 x 1 x + 1 mod N
73 3r19.43 x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N x 0 ..^ N 1 1 1 0 = 0 x 1 x x 0 ..^ N 1 1 1 0 = 1 x 1 x + 1 mod N
74 72 73 sylibr N 3 x 0 ..^ N 1 1 1 0 = 0 x 0 x + 1 mod N 1 1 1 0 = 0 x 1 x 1 1 1 0 = 1 x 1 x + 1 mod N
75 27 28 gpgprismgriedgdmel Could not format ( N e. ( ZZ>= ` 3 ) -> ( { <. 1 , 1 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 1 , 1 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , 1 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 1 >. , <. 1 , 0 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( { <. 1 , 1 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ N ) ( { <. 1 , 1 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , 1 >. , <. 1 , 0 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 1 >. , <. 1 , 0 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) with typecode |-
76 74 75 mpbird Could not format ( N e. ( ZZ>= ` 3 ) -> { <. 1 , 1 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> { <. 1 , 1 >. , <. 1 , 0 >. } e. dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-
77 62 76 prssd Could not format ( N e. ( ZZ>= ` 3 ) -> { { <. 1 , 1 >. , <. 0 , 1 >. } , { <. 1 , 1 >. , <. 1 , 0 >. } } C_ dom ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> { { <. 1 , 1 >. , <. 0 , 1 >. } , { <. 1 , 1 >. , <. 1 , 0 >. } } C_ dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-
78 43 77 unssd Could not format ( N e. ( ZZ>= ` 3 ) -> ( { { <. 0 , 0 >. , <. 0 , 1 >. } , { <. 0 , 0 >. , <. 1 , 0 >. } } u. { { <. 1 , 1 >. , <. 0 , 1 >. } , { <. 1 , 1 >. , <. 1 , 0 >. } } ) C_ dom ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( { { <. 0 , 0 >. , <. 0 , 1 >. } , { <. 0 , 0 >. , <. 1 , 0 >. } } u. { { <. 1 , 1 >. , <. 0 , 1 >. } , { <. 1 , 1 >. , <. 1 , 0 >. } } ) C_ dom ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-