Metamath Proof Explorer


Theorem gpgvtx0

Description: The vertices of the first kind in a generalized Petersen graph G . (Contributed by AV, 30-Aug-2025)

Ref Expression
Hypotheses gpgvtx0.j J = 1 ..^ N 2
gpgvtx0.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgvtx0.v V = Vtx G
Assertion gpgvtx0 N 3 K J X V 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V

Proof

Step Hyp Ref Expression
1 gpgvtx0.j J = 1 ..^ N 2
2 gpgvtx0.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgvtx0.v V = Vtx G
4 eqid 0 ..^ N = 0 ..^ N
5 4 1 2 3 gpgvtxel N 3 K J X V x 0 1 y 0 ..^ N X = x y
6 2 fveq2i Could not format ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) : No typesetting found for |- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) with typecode |-
7 3 6 eqtri Could not format V = ( Vtx ` ( N gPetersenGr K ) ) : No typesetting found for |- V = ( Vtx ` ( N gPetersenGr K ) ) with typecode |-
8 eluzge3nn N 3 N
9 1 4 gpgvtx Could not format ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
10 8 9 sylan Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
11 10 adantr Could not format ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
12 7 11 eqtrid N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N
13 c0ex 0 V
14 13 prid1 0 0 1
15 14 a1i N 3 y 0 ..^ N 0 0 1
16 elfzoelz y 0 ..^ N y
17 16 peano2zd y 0 ..^ N y + 1
18 zmodfzo y + 1 N y + 1 mod N 0 ..^ N
19 17 8 18 syl2anr N 3 y 0 ..^ N y + 1 mod N 0 ..^ N
20 15 19 opelxpd N 3 y 0 ..^ N 0 y + 1 mod N 0 1 × 0 ..^ N
21 simpr N 3 y 0 ..^ N y 0 ..^ N
22 15 21 opelxpd N 3 y 0 ..^ N 0 y 0 1 × 0 ..^ N
23 1zzd y 0 ..^ N 1
24 16 23 zsubcld y 0 ..^ N y 1
25 zmodfzo y 1 N y 1 mod N 0 ..^ N
26 24 8 25 syl2anr N 3 y 0 ..^ N y 1 mod N 0 ..^ N
27 15 26 opelxpd N 3 y 0 ..^ N 0 y 1 mod N 0 1 × 0 ..^ N
28 20 22 27 3jca N 3 y 0 ..^ N 0 y + 1 mod N 0 1 × 0 ..^ N 0 y 0 1 × 0 ..^ N 0 y 1 mod N 0 1 × 0 ..^ N
29 28 ad2ant2rl N 3 K J x 0 1 y 0 ..^ N 0 y + 1 mod N 0 1 × 0 ..^ N 0 y 0 1 × 0 ..^ N 0 y 1 mod N 0 1 × 0 ..^ N
30 29 adantr N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N 0 y + 1 mod N 0 1 × 0 ..^ N 0 y 0 1 × 0 ..^ N 0 y 1 mod N 0 1 × 0 ..^ N
31 eleq2 V = 0 1 × 0 ..^ N 0 y + 1 mod N V 0 y + 1 mod N 0 1 × 0 ..^ N
32 eleq2 V = 0 1 × 0 ..^ N 0 y V 0 y 0 1 × 0 ..^ N
33 eleq2 V = 0 1 × 0 ..^ N 0 y 1 mod N V 0 y 1 mod N 0 1 × 0 ..^ N
34 31 32 33 3anbi123d V = 0 1 × 0 ..^ N 0 y + 1 mod N V 0 y V 0 y 1 mod N V 0 y + 1 mod N 0 1 × 0 ..^ N 0 y 0 1 × 0 ..^ N 0 y 1 mod N 0 1 × 0 ..^ N
35 34 adantl N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N 0 y + 1 mod N V 0 y V 0 y 1 mod N V 0 y + 1 mod N 0 1 × 0 ..^ N 0 y 0 1 × 0 ..^ N 0 y 1 mod N 0 1 × 0 ..^ N
36 30 35 mpbird N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N 0 y + 1 mod N V 0 y V 0 y 1 mod N V
37 12 36 mpdan N 3 K J x 0 1 y 0 ..^ N 0 y + 1 mod N V 0 y V 0 y 1 mod N V
38 vex x V
39 vex y V
40 38 39 op2ndd X = x y 2 nd X = y
41 oveq1 2 nd X = y 2 nd X + 1 = y + 1
42 41 oveq1d 2 nd X = y 2 nd X + 1 mod N = y + 1 mod N
43 42 opeq2d 2 nd X = y 0 2 nd X + 1 mod N = 0 y + 1 mod N
44 43 eleq1d 2 nd X = y 0 2 nd X + 1 mod N V 0 y + 1 mod N V
45 opeq2 2 nd X = y 0 2 nd X = 0 y
46 45 eleq1d 2 nd X = y 0 2 nd X V 0 y V
47 oveq1 2 nd X = y 2 nd X 1 = y 1
48 47 oveq1d 2 nd X = y 2 nd X 1 mod N = y 1 mod N
49 48 opeq2d 2 nd X = y 0 2 nd X 1 mod N = 0 y 1 mod N
50 49 eleq1d 2 nd X = y 0 2 nd X 1 mod N V 0 y 1 mod N V
51 44 46 50 3anbi123d 2 nd X = y 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V 0 y + 1 mod N V 0 y V 0 y 1 mod N V
52 40 51 syl X = x y 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V 0 y + 1 mod N V 0 y V 0 y 1 mod N V
53 37 52 syl5ibrcom N 3 K J x 0 1 y 0 ..^ N X = x y 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V
54 53 rexlimdvva N 3 K J x 0 1 y 0 ..^ N X = x y 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V
55 5 54 sylbid N 3 K J X V 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V
56 55 imp N 3 K J X V 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V