| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgvtx0.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 2 |
|
gpgvtx0.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
| 3 |
|
gpgvtx0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
| 5 |
4 1 2 3
|
gpgvtxel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑥 , 𝑦 〉 ) ) |
| 6 |
2
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
| 7 |
3 6
|
eqtri |
⊢ 𝑉 = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
| 8 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 9 |
1 4
|
gpgvtx |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 10 |
8 9
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 12 |
7 11
|
eqtrid |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 13 |
|
c0ex |
⊢ 0 ∈ V |
| 14 |
13
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 15 |
14
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 0 ∈ { 0 , 1 } ) |
| 16 |
|
elfzoelz |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℤ ) |
| 17 |
16
|
peano2zd |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 + 1 ) ∈ ℤ ) |
| 18 |
|
zmodfzo |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑦 + 1 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 19 |
17 8 18
|
syl2anr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑦 + 1 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 20 |
15 19
|
opelxpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 ∈ ( 0 ..^ 𝑁 ) ) |
| 22 |
15 21
|
opelxpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 〈 0 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 23 |
|
1zzd |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 1 ∈ ℤ ) |
| 24 |
16 23
|
zsubcld |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 − 1 ) ∈ ℤ ) |
| 25 |
|
zmodfzo |
⊢ ( ( ( 𝑦 − 1 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑦 − 1 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 26 |
24 8 25
|
syl2anr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑦 − 1 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 27 |
15 26
|
opelxpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
| 28 |
20 22 27
|
3jca |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
| 29 |
28
|
ad2ant2rl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
| 31 |
|
eleq2 |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
| 32 |
|
eleq2 |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( 〈 0 , 𝑦 〉 ∈ 𝑉 ↔ 〈 0 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
| 33 |
|
eleq2 |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
| 34 |
31 32 33
|
3anbi123d |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , 𝑦 〉 ∈ 𝑉 ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → ( ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , 𝑦 〉 ∈ 𝑉 ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) ) |
| 36 |
30 35
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , 𝑦 〉 ∈ 𝑉 ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 37 |
12 36
|
mpdan |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , 𝑦 〉 ∈ 𝑉 ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 38 |
|
vex |
⊢ 𝑥 ∈ V |
| 39 |
|
vex |
⊢ 𝑦 ∈ V |
| 40 |
38 39
|
op2ndd |
⊢ ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑋 ) = 𝑦 ) |
| 41 |
|
oveq1 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 2nd ‘ 𝑋 ) + 1 ) = ( 𝑦 + 1 ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) = ( ( 𝑦 + 1 ) mod 𝑁 ) ) |
| 43 |
42
|
opeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ) |
| 44 |
43
|
eleq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 45 |
|
opeq2 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , 𝑦 〉 ) |
| 46 |
45
|
eleq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ↔ 〈 0 , 𝑦 〉 ∈ 𝑉 ) ) |
| 47 |
|
oveq1 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 2nd ‘ 𝑋 ) − 1 ) = ( 𝑦 − 1 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) = ( ( 𝑦 − 1 ) mod 𝑁 ) ) |
| 49 |
48
|
opeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ) |
| 50 |
49
|
eleq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 51 |
44 46 50
|
3anbi123d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , 𝑦 〉 ∈ 𝑉 ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
| 52 |
40 51
|
syl |
⊢ ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , 𝑦 〉 ∈ 𝑉 ∧ 〈 0 , ( ( 𝑦 − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
| 53 |
37 52
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
| 54 |
53
|
rexlimdvva |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
| 55 |
5 54
|
sylbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |