Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtx0.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgvtx0.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgvtx0.v |
|- V = ( Vtx ` G ) |
4 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
5 |
4 1 2 3
|
gpgvtxel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. ( 0 ..^ N ) X = <. x , y >. ) ) |
6 |
2
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) |
7 |
3 6
|
eqtri |
|- V = ( Vtx ` ( N gPetersenGr K ) ) |
8 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
9 |
1 4
|
gpgvtx |
|- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
10 |
8 9
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
11 |
10
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
12 |
7 11
|
eqtrid |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
13 |
|
c0ex |
|- 0 e. _V |
14 |
13
|
prid1 |
|- 0 e. { 0 , 1 } |
15 |
14
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> 0 e. { 0 , 1 } ) |
16 |
|
elfzoelz |
|- ( y e. ( 0 ..^ N ) -> y e. ZZ ) |
17 |
16
|
peano2zd |
|- ( y e. ( 0 ..^ N ) -> ( y + 1 ) e. ZZ ) |
18 |
|
zmodfzo |
|- ( ( ( y + 1 ) e. ZZ /\ N e. NN ) -> ( ( y + 1 ) mod N ) e. ( 0 ..^ N ) ) |
19 |
17 8 18
|
syl2anr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> ( ( y + 1 ) mod N ) e. ( 0 ..^ N ) ) |
20 |
15 19
|
opelxpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> <. 0 , ( ( y + 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
21 |
|
simpr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> y e. ( 0 ..^ N ) ) |
22 |
15 21
|
opelxpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> <. 0 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
23 |
|
1zzd |
|- ( y e. ( 0 ..^ N ) -> 1 e. ZZ ) |
24 |
16 23
|
zsubcld |
|- ( y e. ( 0 ..^ N ) -> ( y - 1 ) e. ZZ ) |
25 |
|
zmodfzo |
|- ( ( ( y - 1 ) e. ZZ /\ N e. NN ) -> ( ( y - 1 ) mod N ) e. ( 0 ..^ N ) ) |
26 |
24 8 25
|
syl2anr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> ( ( y - 1 ) mod N ) e. ( 0 ..^ N ) ) |
27 |
15 26
|
opelxpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> <. 0 , ( ( y - 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
28 |
20 22 27
|
3jca |
|- ( ( N e. ( ZZ>= ` 3 ) /\ y e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( y + 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , ( ( y - 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
29 |
28
|
ad2ant2rl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( <. 0 , ( ( y + 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , ( ( y - 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
30 |
29
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) /\ V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) -> ( <. 0 , ( ( y + 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , ( ( y - 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
31 |
|
eleq2 |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( <. 0 , ( ( y + 1 ) mod N ) >. e. V <-> <. 0 , ( ( y + 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
32 |
|
eleq2 |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( <. 0 , y >. e. V <-> <. 0 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
33 |
|
eleq2 |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( <. 0 , ( ( y - 1 ) mod N ) >. e. V <-> <. 0 , ( ( y - 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
34 |
31 32 33
|
3anbi123d |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( ( <. 0 , ( ( y + 1 ) mod N ) >. e. V /\ <. 0 , y >. e. V /\ <. 0 , ( ( y - 1 ) mod N ) >. e. V ) <-> ( <. 0 , ( ( y + 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , ( ( y - 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) ) |
35 |
34
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) /\ V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) -> ( ( <. 0 , ( ( y + 1 ) mod N ) >. e. V /\ <. 0 , y >. e. V /\ <. 0 , ( ( y - 1 ) mod N ) >. e. V ) <-> ( <. 0 , ( ( y + 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 0 , ( ( y - 1 ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) ) |
36 |
30 35
|
mpbird |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) /\ V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) -> ( <. 0 , ( ( y + 1 ) mod N ) >. e. V /\ <. 0 , y >. e. V /\ <. 0 , ( ( y - 1 ) mod N ) >. e. V ) ) |
37 |
12 36
|
mpdan |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( <. 0 , ( ( y + 1 ) mod N ) >. e. V /\ <. 0 , y >. e. V /\ <. 0 , ( ( y - 1 ) mod N ) >. e. V ) ) |
38 |
|
vex |
|- x e. _V |
39 |
|
vex |
|- y e. _V |
40 |
38 39
|
op2ndd |
|- ( X = <. x , y >. -> ( 2nd ` X ) = y ) |
41 |
|
oveq1 |
|- ( ( 2nd ` X ) = y -> ( ( 2nd ` X ) + 1 ) = ( y + 1 ) ) |
42 |
41
|
oveq1d |
|- ( ( 2nd ` X ) = y -> ( ( ( 2nd ` X ) + 1 ) mod N ) = ( ( y + 1 ) mod N ) ) |
43 |
42
|
opeq2d |
|- ( ( 2nd ` X ) = y -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( y + 1 ) mod N ) >. ) |
44 |
43
|
eleq1d |
|- ( ( 2nd ` X ) = y -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V <-> <. 0 , ( ( y + 1 ) mod N ) >. e. V ) ) |
45 |
|
opeq2 |
|- ( ( 2nd ` X ) = y -> <. 0 , ( 2nd ` X ) >. = <. 0 , y >. ) |
46 |
45
|
eleq1d |
|- ( ( 2nd ` X ) = y -> ( <. 0 , ( 2nd ` X ) >. e. V <-> <. 0 , y >. e. V ) ) |
47 |
|
oveq1 |
|- ( ( 2nd ` X ) = y -> ( ( 2nd ` X ) - 1 ) = ( y - 1 ) ) |
48 |
47
|
oveq1d |
|- ( ( 2nd ` X ) = y -> ( ( ( 2nd ` X ) - 1 ) mod N ) = ( ( y - 1 ) mod N ) ) |
49 |
48
|
opeq2d |
|- ( ( 2nd ` X ) = y -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( y - 1 ) mod N ) >. ) |
50 |
49
|
eleq1d |
|- ( ( 2nd ` X ) = y -> ( <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V <-> <. 0 , ( ( y - 1 ) mod N ) >. e. V ) ) |
51 |
44 46 50
|
3anbi123d |
|- ( ( 2nd ` X ) = y -> ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ <. 0 , ( 2nd ` X ) >. e. V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) <-> ( <. 0 , ( ( y + 1 ) mod N ) >. e. V /\ <. 0 , y >. e. V /\ <. 0 , ( ( y - 1 ) mod N ) >. e. V ) ) ) |
52 |
40 51
|
syl |
|- ( X = <. x , y >. -> ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ <. 0 , ( 2nd ` X ) >. e. V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) <-> ( <. 0 , ( ( y + 1 ) mod N ) >. e. V /\ <. 0 , y >. e. V /\ <. 0 , ( ( y - 1 ) mod N ) >. e. V ) ) ) |
53 |
37 52
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( X = <. x , y >. -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ <. 0 , ( 2nd ` X ) >. e. V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) ) ) |
54 |
53
|
rexlimdvva |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( E. x e. { 0 , 1 } E. y e. ( 0 ..^ N ) X = <. x , y >. -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ <. 0 , ( 2nd ` X ) >. e. V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) ) ) |
55 |
5 54
|
sylbid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ <. 0 , ( 2nd ` X ) >. e. V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) ) ) |
56 |
55
|
imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ <. 0 , ( 2nd ` X ) >. e. V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) ) |