Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtx0.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgvtx0.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgvtx0.v |
|- V = ( Vtx ` G ) |
4 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
5 |
4 1 2 3
|
gpgvtxel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. ( 0 ..^ N ) X = <. x , y >. ) ) |
6 |
2
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) |
7 |
3 6
|
eqtri |
|- V = ( Vtx ` ( N gPetersenGr K ) ) |
8 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
9 |
1 4
|
gpgvtx |
|- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
10 |
8 9
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
11 |
10
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
12 |
7 11
|
eqtrid |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
13 |
|
1ex |
|- 1 e. _V |
14 |
13
|
prid2 |
|- 1 e. { 0 , 1 } |
15 |
14
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> 1 e. { 0 , 1 } ) |
16 |
|
elfzoelz |
|- ( y e. ( 0 ..^ N ) -> y e. ZZ ) |
17 |
16
|
adantl |
|- ( ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) -> y e. ZZ ) |
18 |
17
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> y e. ZZ ) |
19 |
|
elfzoelz |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ZZ ) |
20 |
19 1
|
eleq2s |
|- ( K e. J -> K e. ZZ ) |
21 |
20
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> K e. ZZ ) |
22 |
21
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> K e. ZZ ) |
23 |
18 22
|
zaddcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( y + K ) e. ZZ ) |
24 |
8
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> N e. NN ) |
25 |
24
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> N e. NN ) |
26 |
|
zmodfzo |
|- ( ( ( y + K ) e. ZZ /\ N e. NN ) -> ( ( y + K ) mod N ) e. ( 0 ..^ N ) ) |
27 |
23 25 26
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( ( y + K ) mod N ) e. ( 0 ..^ N ) ) |
28 |
15 27
|
opelxpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> <. 1 , ( ( y + K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
29 |
|
simprr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> y e. ( 0 ..^ N ) ) |
30 |
15 29
|
opelxpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> <. 1 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
31 |
18 22
|
zsubcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( y - K ) e. ZZ ) |
32 |
|
zmodfzo |
|- ( ( ( y - K ) e. ZZ /\ N e. NN ) -> ( ( y - K ) mod N ) e. ( 0 ..^ N ) ) |
33 |
31 25 32
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( ( y - K ) mod N ) e. ( 0 ..^ N ) ) |
34 |
15 33
|
opelxpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> <. 1 , ( ( y - K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
35 |
28 30 34
|
3jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( <. 1 , ( ( y + K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , ( ( y - K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) /\ V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) -> ( <. 1 , ( ( y + K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , ( ( y - K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
37 |
|
eleq2 |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( <. 1 , ( ( y + K ) mod N ) >. e. V <-> <. 1 , ( ( y + K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
38 |
|
eleq2 |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( <. 1 , y >. e. V <-> <. 1 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
39 |
|
eleq2 |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( <. 1 , ( ( y - K ) mod N ) >. e. V <-> <. 1 , ( ( y - K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
40 |
37 38 39
|
3anbi123d |
|- ( V = ( { 0 , 1 } X. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( y + K ) mod N ) >. e. V /\ <. 1 , y >. e. V /\ <. 1 , ( ( y - K ) mod N ) >. e. V ) <-> ( <. 1 , ( ( y + K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , ( ( y - K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) ) |
41 |
40
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) /\ V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) -> ( ( <. 1 , ( ( y + K ) mod N ) >. e. V /\ <. 1 , y >. e. V /\ <. 1 , ( ( y - K ) mod N ) >. e. V ) <-> ( <. 1 , ( ( y + K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , y >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) /\ <. 1 , ( ( y - K ) mod N ) >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) ) |
42 |
36 41
|
mpbird |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) /\ V = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) -> ( <. 1 , ( ( y + K ) mod N ) >. e. V /\ <. 1 , y >. e. V /\ <. 1 , ( ( y - K ) mod N ) >. e. V ) ) |
43 |
12 42
|
mpdan |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( <. 1 , ( ( y + K ) mod N ) >. e. V /\ <. 1 , y >. e. V /\ <. 1 , ( ( y - K ) mod N ) >. e. V ) ) |
44 |
|
vex |
|- x e. _V |
45 |
|
vex |
|- y e. _V |
46 |
44 45
|
op2ndd |
|- ( X = <. x , y >. -> ( 2nd ` X ) = y ) |
47 |
|
oveq1 |
|- ( ( 2nd ` X ) = y -> ( ( 2nd ` X ) + K ) = ( y + K ) ) |
48 |
47
|
oveq1d |
|- ( ( 2nd ` X ) = y -> ( ( ( 2nd ` X ) + K ) mod N ) = ( ( y + K ) mod N ) ) |
49 |
48
|
opeq2d |
|- ( ( 2nd ` X ) = y -> <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( y + K ) mod N ) >. ) |
50 |
49
|
eleq1d |
|- ( ( 2nd ` X ) = y -> ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V <-> <. 1 , ( ( y + K ) mod N ) >. e. V ) ) |
51 |
|
opeq2 |
|- ( ( 2nd ` X ) = y -> <. 1 , ( 2nd ` X ) >. = <. 1 , y >. ) |
52 |
51
|
eleq1d |
|- ( ( 2nd ` X ) = y -> ( <. 1 , ( 2nd ` X ) >. e. V <-> <. 1 , y >. e. V ) ) |
53 |
|
oveq1 |
|- ( ( 2nd ` X ) = y -> ( ( 2nd ` X ) - K ) = ( y - K ) ) |
54 |
53
|
oveq1d |
|- ( ( 2nd ` X ) = y -> ( ( ( 2nd ` X ) - K ) mod N ) = ( ( y - K ) mod N ) ) |
55 |
54
|
opeq2d |
|- ( ( 2nd ` X ) = y -> <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( y - K ) mod N ) >. ) |
56 |
55
|
eleq1d |
|- ( ( 2nd ` X ) = y -> ( <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V <-> <. 1 , ( ( y - K ) mod N ) >. e. V ) ) |
57 |
50 52 56
|
3anbi123d |
|- ( ( 2nd ` X ) = y -> ( ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V /\ <. 1 , ( 2nd ` X ) >. e. V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V ) <-> ( <. 1 , ( ( y + K ) mod N ) >. e. V /\ <. 1 , y >. e. V /\ <. 1 , ( ( y - K ) mod N ) >. e. V ) ) ) |
58 |
46 57
|
syl |
|- ( X = <. x , y >. -> ( ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V /\ <. 1 , ( 2nd ` X ) >. e. V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V ) <-> ( <. 1 , ( ( y + K ) mod N ) >. e. V /\ <. 1 , y >. e. V /\ <. 1 , ( ( y - K ) mod N ) >. e. V ) ) ) |
59 |
43 58
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( X = <. x , y >. -> ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V /\ <. 1 , ( 2nd ` X ) >. e. V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V ) ) ) |
60 |
59
|
rexlimdvva |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( E. x e. { 0 , 1 } E. y e. ( 0 ..^ N ) X = <. x , y >. -> ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V /\ <. 1 , ( 2nd ` X ) >. e. V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V ) ) ) |
61 |
5 60
|
sylbid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V -> ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V /\ <. 1 , ( 2nd ` X ) >. e. V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V ) ) ) |
62 |
61
|
imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V /\ <. 1 , ( 2nd ` X ) >. e. V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V ) ) |