Step |
Hyp |
Ref |
Expression |
1 |
|
opgpgvtx.i |
|- I = ( 0 ..^ N ) |
2 |
|
opgpgvtx.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
3 |
|
opgpgvtx.g |
|- G = ( N gPetersenGr K ) |
4 |
|
opgpgvtx.v |
|- V = ( Vtx ` G ) |
5 |
3
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) |
6 |
4 5
|
eqtri |
|- V = ( Vtx ` ( N gPetersenGr K ) ) |
7 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
8 |
2 1
|
gpgvtx |
|- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. I ) ) |
9 |
7 8
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. I ) ) |
10 |
6 9
|
eqtrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> V = ( { 0 , 1 } X. I ) ) |
11 |
10
|
eleq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( <. X , Y >. e. V <-> <. X , Y >. e. ( { 0 , 1 } X. I ) ) ) |
12 |
|
opelxp |
|- ( <. X , Y >. e. ( { 0 , 1 } X. I ) <-> ( X e. { 0 , 1 } /\ Y e. I ) ) |
13 |
12
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( <. X , Y >. e. ( { 0 , 1 } X. I ) <-> ( X e. { 0 , 1 } /\ Y e. I ) ) ) |
14 |
|
c0ex |
|- 0 e. _V |
15 |
|
1ex |
|- 1 e. _V |
16 |
14 15
|
elpr2 |
|- ( X e. { 0 , 1 } <-> ( X = 0 \/ X = 1 ) ) |
17 |
16
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. { 0 , 1 } <-> ( X = 0 \/ X = 1 ) ) ) |
18 |
17
|
anbi1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( ( X e. { 0 , 1 } /\ Y e. I ) <-> ( ( X = 0 \/ X = 1 ) /\ Y e. I ) ) ) |
19 |
11 13 18
|
3bitrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( <. X , Y >. e. V <-> ( ( X = 0 \/ X = 1 ) /\ Y e. I ) ) ) |