Step |
Hyp |
Ref |
Expression |
1 |
|
opgpgvtx.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
2 |
|
opgpgvtx.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
3 |
|
opgpgvtx.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
4 |
|
opgpgvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
5 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
6 |
4 5
|
eqtri |
⊢ 𝑉 = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
7 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
8 |
2 1
|
gpgvtx |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) ) |
10 |
6 9
|
eqtrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → 𝑉 = ( { 0 , 1 } × 𝐼 ) ) |
11 |
10
|
eleq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 〈 𝑋 , 𝑌 〉 ∈ 𝑉 ↔ 〈 𝑋 , 𝑌 〉 ∈ ( { 0 , 1 } × 𝐼 ) ) ) |
12 |
|
opelxp |
⊢ ( 〈 𝑋 , 𝑌 〉 ∈ ( { 0 , 1 } × 𝐼 ) ↔ ( 𝑋 ∈ { 0 , 1 } ∧ 𝑌 ∈ 𝐼 ) ) |
13 |
12
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 〈 𝑋 , 𝑌 〉 ∈ ( { 0 , 1 } × 𝐼 ) ↔ ( 𝑋 ∈ { 0 , 1 } ∧ 𝑌 ∈ 𝐼 ) ) ) |
14 |
|
c0ex |
⊢ 0 ∈ V |
15 |
|
1ex |
⊢ 1 ∈ V |
16 |
14 15
|
elpr2 |
⊢ ( 𝑋 ∈ { 0 , 1 } ↔ ( 𝑋 = 0 ∨ 𝑋 = 1 ) ) |
17 |
16
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ { 0 , 1 } ↔ ( 𝑋 = 0 ∨ 𝑋 = 1 ) ) ) |
18 |
17
|
anbi1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( ( 𝑋 ∈ { 0 , 1 } ∧ 𝑌 ∈ 𝐼 ) ↔ ( ( 𝑋 = 0 ∨ 𝑋 = 1 ) ∧ 𝑌 ∈ 𝐼 ) ) ) |
19 |
11 13 18
|
3bitrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 〈 𝑋 , 𝑌 〉 ∈ 𝑉 ↔ ( ( 𝑋 = 0 ∨ 𝑋 = 1 ) ∧ 𝑌 ∈ 𝐼 ) ) ) |