Metamath Proof Explorer


Theorem opgpgvtx

Description: A vertex in a generalized Petersen graph G as ordered pair. (Contributed by AV, 1-Oct-2025)

Ref Expression
Hypotheses opgpgvtx.i 𝐼 = ( 0 ..^ 𝑁 )
opgpgvtx.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
opgpgvtx.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
opgpgvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion opgpgvtx ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑉 ↔ ( ( 𝑋 = 0 ∨ 𝑋 = 1 ) ∧ 𝑌𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 opgpgvtx.i 𝐼 = ( 0 ..^ 𝑁 )
2 opgpgvtx.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
3 opgpgvtx.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
4 opgpgvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
5 3 fveq2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) )
6 4 5 eqtri 𝑉 = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) )
7 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
8 2 1 gpgvtx ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) )
9 7 8 sylan ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) )
10 6 9 eqtrid ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → 𝑉 = ( { 0 , 1 } × 𝐼 ) )
11 10 eleq2d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑉 ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( { 0 , 1 } × 𝐼 ) ) )
12 opelxp ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( { 0 , 1 } × 𝐼 ) ↔ ( 𝑋 ∈ { 0 , 1 } ∧ 𝑌𝐼 ) )
13 12 a1i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( { 0 , 1 } × 𝐼 ) ↔ ( 𝑋 ∈ { 0 , 1 } ∧ 𝑌𝐼 ) ) )
14 c0ex 0 ∈ V
15 1ex 1 ∈ V
16 14 15 elpr2 ( 𝑋 ∈ { 0 , 1 } ↔ ( 𝑋 = 0 ∨ 𝑋 = 1 ) )
17 16 a1i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋 ∈ { 0 , 1 } ↔ ( 𝑋 = 0 ∨ 𝑋 = 1 ) ) )
18 17 anbi1d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ( 𝑋 ∈ { 0 , 1 } ∧ 𝑌𝐼 ) ↔ ( ( 𝑋 = 0 ∨ 𝑋 = 1 ) ∧ 𝑌𝐼 ) ) )
19 11 13 18 3bitrd ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑉 ↔ ( ( 𝑋 = 0 ∨ 𝑋 = 1 ) ∧ 𝑌𝐼 ) ) )