Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtx0.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgvtx0.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpgvtx0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
5 |
4 1 2 3
|
gpgvtxel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑥 , 𝑦 〉 ) ) |
6 |
2
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
7 |
3 6
|
eqtri |
⊢ 𝑉 = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
8 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
9 |
1 4
|
gpgvtx |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
12 |
7 11
|
eqtrid |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
13 |
|
1ex |
⊢ 1 ∈ V |
14 |
13
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
15 |
14
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 1 ∈ { 0 , 1 } ) |
16 |
|
elfzoelz |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℤ ) |
17 |
16
|
adantl |
⊢ ( ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 ∈ ℤ ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 𝑦 ∈ ℤ ) |
19 |
|
elfzoelz |
⊢ ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → 𝐾 ∈ ℤ ) |
20 |
19 1
|
eleq2s |
⊢ ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ ) |
21 |
20
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → 𝐾 ∈ ℤ ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 𝐾 ∈ ℤ ) |
23 |
18 22
|
zaddcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝑦 + 𝐾 ) ∈ ℤ ) |
24 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → 𝑁 ∈ ℕ ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
26 |
|
zmodfzo |
⊢ ( ( ( 𝑦 + 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
28 |
15 27
|
opelxpd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
29 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 𝑦 ∈ ( 0 ..^ 𝑁 ) ) |
30 |
15 29
|
opelxpd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 〈 1 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
31 |
18 22
|
zsubcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝑦 − 𝐾 ) ∈ ℤ ) |
32 |
|
zmodfzo |
⊢ ( ( ( 𝑦 − 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑦 − 𝐾 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
33 |
31 25 32
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( ( 𝑦 − 𝐾 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
34 |
15 33
|
opelxpd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) |
35 |
28 30 34
|
3jca |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
37 |
|
eleq2 |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
38 |
|
eleq2 |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( 〈 1 , 𝑦 〉 ∈ 𝑉 ↔ 〈 1 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
39 |
|
eleq2 |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) |
40 |
37 38 39
|
3anbi123d |
⊢ ( 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) → ( ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , 𝑦 〉 ∈ 𝑉 ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → ( ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , 𝑦 〉 ∈ 𝑉 ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , 𝑦 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) ) ) |
42 |
36 41
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝑉 = ( { 0 , 1 } × ( 0 ..^ 𝑁 ) ) ) → ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , 𝑦 〉 ∈ 𝑉 ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
43 |
12 42
|
mpdan |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , 𝑦 〉 ∈ 𝑉 ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
44 |
|
vex |
⊢ 𝑥 ∈ V |
45 |
|
vex |
⊢ 𝑦 ∈ V |
46 |
44 45
|
op2ndd |
⊢ ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑋 ) = 𝑦 ) |
47 |
|
oveq1 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 2nd ‘ 𝑋 ) + 𝐾 ) = ( 𝑦 + 𝐾 ) ) |
48 |
47
|
oveq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) = ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ) |
49 |
48
|
opeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) |
50 |
49
|
eleq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
51 |
|
opeq2 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 1 , ( 2nd ‘ 𝑋 ) 〉 = 〈 1 , 𝑦 〉 ) |
52 |
51
|
eleq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ↔ 〈 1 , 𝑦 〉 ∈ 𝑉 ) ) |
53 |
|
oveq1 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 2nd ‘ 𝑋 ) − 𝐾 ) = ( 𝑦 − 𝐾 ) ) |
54 |
53
|
oveq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) = ( ( 𝑦 − 𝐾 ) mod 𝑁 ) ) |
55 |
54
|
opeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ) |
56 |
55
|
eleq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ↔ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
57 |
50 52 56
|
3anbi123d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , 𝑦 〉 ∈ 𝑉 ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
58 |
46 57
|
syl |
⊢ ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ↔ ( 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , 𝑦 〉 ∈ 𝑉 ∧ 〈 1 , ( ( 𝑦 − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
59 |
43 58
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
60 |
59
|
rexlimdvva |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
61 |
5 60
|
sylbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) ) |
62 |
61
|
imp |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |