Metamath Proof Explorer


Theorem gpgprismgriedgdmel

Description: An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypotheses gpgprismgriedgdmel.i 𝐼 = ( 0 ..^ 𝑁 )
gpgprismgriedgdmel.g 𝐺 = ( 𝑁 gPetersenGr 1 )
Assertion gpgprismgriedgdmel ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )

Proof

Step Hyp Ref Expression
1 gpgprismgriedgdmel.i 𝐼 = ( 0 ..^ 𝑁 )
2 gpgprismgriedgdmel.g 𝐺 = ( 𝑁 gPetersenGr 1 )
3 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
4 1elfzo1ceilhalf1 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
5 eqid ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
6 1 5 2 gpgiedgdmel ( ( 𝑁 ∈ ℕ ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )
7 3 4 6 syl2anc ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) ) )