| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgprismgriedgdmel.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
| 2 |
|
gpgprismgriedgdmel.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 1 ) |
| 3 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 4 |
|
1elfzo1ceilhalf1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 5 |
|
eqid |
⊢ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 6 |
1 5 2
|
gpgiedgdmel |
⊢ ( ( 𝑁 ∈ ℕ ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ 𝐼 ( 𝑋 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑋 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑋 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) ) |
| 7 |
3 4 6
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ 𝐼 ( 𝑋 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑋 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑋 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) ) ) |