Description: An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gpgprismgriedgdmel.i | |- I = ( 0 ..^ N ) |
|
| gpgprismgriedgdmel.g | |- G = ( N gPetersenGr 1 ) |
||
| Assertion | gpgprismgriedgdmel | |- ( N e. ( ZZ>= ` 3 ) -> ( X e. dom ( iEdg ` G ) <-> E. x e. I ( X = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ X = { <. 0 , x >. , <. 1 , x >. } \/ X = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgprismgriedgdmel.i | |- I = ( 0 ..^ N ) |
|
| 2 | gpgprismgriedgdmel.g | |- G = ( N gPetersenGr 1 ) |
|
| 3 | eluzge3nn | |- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
|
| 4 | 1elfzo1ceilhalf1 | |- ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
|
| 5 | eqid | |- ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
|
| 6 | 1 5 2 | gpgiedgdmel | |- ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( X e. dom ( iEdg ` G ) <-> E. x e. I ( X = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ X = { <. 0 , x >. , <. 1 , x >. } \/ X = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) |
| 7 | 3 4 6 | syl2anc | |- ( N e. ( ZZ>= ` 3 ) -> ( X e. dom ( iEdg ` G ) <-> E. x e. I ( X = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ X = { <. 0 , x >. , <. 1 , x >. } \/ X = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) ) |