Metamath Proof Explorer


Theorem gpgprismgriedgdmel

Description: An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypotheses gpgprismgriedgdmel.i
|- I = ( 0 ..^ N )
gpgprismgriedgdmel.g
|- G = ( N gPetersenGr 1 )
Assertion gpgprismgriedgdmel
|- ( N e. ( ZZ>= ` 3 ) -> ( X e. dom ( iEdg ` G ) <-> E. x e. I ( X = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ X = { <. 0 , x >. , <. 1 , x >. } \/ X = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) )

Proof

Step Hyp Ref Expression
1 gpgprismgriedgdmel.i
 |-  I = ( 0 ..^ N )
2 gpgprismgriedgdmel.g
 |-  G = ( N gPetersenGr 1 )
3 eluzge3nn
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN )
4 1elfzo1ceilhalf1
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
5 eqid
 |-  ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
6 1 5 2 gpgiedgdmel
 |-  ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( X e. dom ( iEdg ` G ) <-> E. x e. I ( X = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ X = { <. 0 , x >. , <. 1 , x >. } \/ X = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) )
7 3 4 6 syl2anc
 |-  ( N e. ( ZZ>= ` 3 ) -> ( X e. dom ( iEdg ` G ) <-> E. x e. I ( X = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ X = { <. 0 , x >. , <. 1 , x >. } \/ X = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) ) )